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Abstract

¿e subject of this thesis is the coupling of quantum �elds to a classical gravitational
background in a semiclassical fashion. It contains a thorough introduction into quan-
tum �eld theory on curved spacetime with a focus on the stress-energy tensor and the
semiclassical Einstein equation. Basic notions of di�erential geometry, topology, func-
tional and microlocal analysis, causality and general relativity will be summarised, and
the algebraic approach to quantum �eld theory on curved spacetime will be reviewed. ¿e
latter part contains an introduction to the framework of locally covariant quantum �eld
theory and relevant quantum states: Hadamard states and, on cosmological spacetimes,
adiabatic states. Apart from these foundations, the original research of the author and his
collaborators will be presented:

Together with Fewster, the author studied the up and down structure of circular and
linear permutations using their decomposition into so-called atomic permutations. ¿e
relevance of these results to this thesis is their application in the calculation of themoments
of quadratic quantum �elds in the quest to determine their probability distribution.

In a work with Pinamonti, the author showed the local and global existence of solutions
to the semiclassical Einstein equation in �at cosmological spacetimes coupled to a massive
conformally coupled scalar �eld by solving simultaneously for the quantum state and
the Hubble function in an integral-functional equation. ¿e theorem is proved with
the Banach �xed-point theorem using the continuous functional di�erentiability and
boundedness of the integral kernel of the integral-functional equation.

Since the semiclassical Einstein equation neglects the quantum nature of the stress-
energy tensor by ignoring its �uctuations, the author proposed in another work with
Pinamonti an extension of the semiclassical Einstein equations which couples themoments
of a stochastic Einstein tensor to the moments of the quantum stress-energy tensor. In
a toy model of a Newtonianly perturbed exponentially expanding spacetime it is shown
that the quantum �uctuations of the stress-energy tensor induce an almost-scale-invariant
power spectrum for the perturbation potential and that non-Gaussianties arise naturally.
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Introduction

¿e subject of this thesis is the interplay between quantum matter and gravity, i.e., the
coupling of quantum �elds to a classical gravitational background in a semiclassical fashion.
Semiclassical gravity describes physics midway between the classical regime covered by
the Einstein equation and a full-�edged quantum gravity. However, while no theory of
quantum gravity is universally accepted, quantum �eld theory on curved spacetimes o�ers
an approach to the ‘low’-energy and ‘small’-curvature regime based on the �rm foundation
of quantum �eld theory and Lorentzian geometry. Despite of the employed approximation,
it has made several successful and relevant predictions like the Fulling–Davies–Unruh
e�ect [67, 105, 214], the Hawking e�ect [100, 118], cosmological particle creation [171] and
the generation of curvature �uctuations during in�ation [108, 120, 161, 202]. It is generally
expected that a successful theory of quantum gravity also describes these phenomena and,
in fact, they are used as criteria to select candidate theories.

Although quantum gravity is one motivation for studying quantum �eld theory on
curved spacetime, it is not the only reason. While quantum �eld theory is typically
formulated on a Minkowski background, the Universe appears well-described by a curved
spacetime and Minkowski spacetime provides only a local approximation. However, even
the slightest gravitational interaction causes many of the basic assumptions of ‘standard’
quantum �eld theory on Minkowski spacetime to fail and in important situations, like
in�ation, the departure from a �at background is not small but causes important e�ects that
cannot be neglected. From this point of view it would be conceptually very unsatisfying if
it was not possible to successfully formulate quantum �eld theory on a curved spacetime
in such a way that it reduces to standard QFT in the case of a �at background.

Attempts to formalize quantum �eld theory in a mathematically exact manner have
led to many signi�cant insights into the structure of quantum �elds: the CPT theorem, the
spin-statistics connection, and superselection sectors to name a few, see e.g. [110, 206]. By
studying aspects of semiclassical gravity and quantum �eld theory on curved spacetimes
in the rigorous framework of algebraic quantum �eld theory, one hopes to gain deep and
novel insights into the subtle nature of quantum �elds on curved spacetimes and at the
same time o en prove theorems that have also a purely mathematical value. Moreover,
as a consequence of the correspondence principle, it is highly plausible that a careful
investigation of the semiclassical theory gives us further hints about the structure of an
eventual theory of quantum gravity. In particular, one can expect that observations in
cosmology are already described to high precision within semiclassical Einstein gravity
and that tight limits can be placed on the creation of extreme objects such as wormholes
in generic spacetimes.

In the formulation of quantum �eld theory onMinkowski spacetime one usually starts
the with the unique Poincaré-invariant vacuum state as the ground state in a Fock space
motivated by the particle interpretation. On a generic spacetime, due to the absence of
any symmetries, no such distinguished state can exist and, as illustrated in the Unruh and
the Hawking e�ect, no unique particle interpretation is available. ¿is suggests that the
starting point for a quantum �eld theory on curved spacetimes should be a formulation
that does not require a preferred state. For this reason, rigorous quantum �eld theory
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on curved spacetimes is o en discussed within the algebraic approach to quantum �eld
theory [109–111]. In the algebraic approach one begins by considering an abstract algebra
of quantum �elds, which respects conditions of locality (quantum �elds only depend on
the local structure of the spacetime) and causality (causally separated quantum �elds
(anti)commute).

A modern formulation of QFT on curved spacetimes is the framework of locally
covariant quantum �eld theory [46]. It helped the development of several important
contributions toQFTon curved spacetimes like renormalization and perturbative algebraic
quantum �eld theory [43, 101, 102], superselection sectors on curved spacetimes [47],
abstract and concrete results on gauge theories [30–32, 59, 86, 194] and many other
results. In this framework one considers quantum �eld theories as covariant functors from
a category of background structures to a category of physical systems. In most simple
examples the background structure is given by a category of globally hyperbolic spacetimes
with so-called hyperbolic embeddings as morphisms, but the background structure can
be replaced by anything reasonable that allows for a categorical formulation, see [2, 177]
for examples of alternative choices. A suitable category representing physical systems for
algebraic quantum �eld theory is a category of ∗-algebras so that a quantum �eld theory
maps a spacetime to an algebra of observables in that spacetime.

However, while states, viz., positive linear functionals on a ∗-algebra, are not necessary
for the formulation of the theory, they are indispensable if one wants to make quanti-
tative predictions. Given a state it is possible to return to a Hilbert space picture as a
representation of the ∗-algebra of observables via the Gel’fand–Naimark–Segal theorem.
Not all possible states on the algebra of quantum �elds are of equal physical importance.
Physically and mathematically preferred states are the so-called Hadamard states, which
have an ultraviolet behaviour analogous to that of the Minkowski vacuum. Hadamard
states are for example required for a reasonable semiclassical Einstein equation; otherwise
the �uctuations of the quantum stress-energy tensor are not even distributions and the
semiclassical Einstein equation becomes physically meaningless, because we equate a
quantity with a probabilistic interpretation and ‘diverging’ �uctuations with a classical
non-�uctuating quantity. Major advances in quantum �eld theory on curved spacetime
were achieved a er it was realized in [181] that all Hadamard states satisfy a constraint on
the wavefront set of the n-point functions of the state. ¿is constraint was calledmicrolocal
spectrum condition in allusion to the condition fromWightman quantum �eld theory on
Minkowski spacetime. In particular, this discovery led to the formulation of a rigorous
theory of renormalization and a concept of normal ordering on curved spacetimes [44, 45,
123, 124].

¿e developments of quantum �eld theory on curved spacetimes were o en driven
by problems related to the semiclassical Einstein equation. In the semiclassical Einstein
equation contains instead of a classical stress-energy tensor the expectation value of a
quantum stress-energy tensor ∶Tab ∶ in a certain state ω:

Gab + Λgab = 8πG
c4

ω( ∶Tab ∶).
¿e quantum stress-energy tensor may be obtained by replacing the products of classical
�elds in the classical stress-energy tensor by normally ordered products of quantum �elds.
¿is requires the notion of normal ordering on curved spacetimes mentioned above. ¿e
resulting quantum stress-energy is not uniquely �xed but, due to the non-uniqueness
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of the normal ordering prescription, subject to a renormalization freedom, which is a
polynomial of local geometric quantities, whose coe�cients are called renormalization
constants.

Quantum �eld theory on curved spacetimes is best understood in a few special cases
of highly symmetric spacetimes. In particular quantum �elds on Friedmann–Lemaître–
Robertson–Walker spacetimes are well-studied as they are important in quantum cos-
mology. Nevertheless, already in this simpli�ed case many interesting e�ects occur, for
example the creation of particles in an expanding spacetime [171]. Due to the develop-
ments discussed above, in recent years computations of quantum �eld theoretic e�ects
in cosmological spacetimes and their backreaction to the spacetime via the semiclassical
Einstein equation have come into the reach of the algebraic approach to QFT on curved
spacetimes.

A �rst step towards doing cosmology in algebraic QFT on curved spacetimes is o en
the construction of appropriate states. Noteworthy recent works are the holographic (or
bulk-to-boundary) construction [57, 61–65, 1, 157, 159] and the states of low energy [165,
210] (see also [70, 71]) which are a Bogoliubov transformation of adiabatic states [134,
146, 172]. Given a state, one can study the semiclassical Einstein equation to study the
backreaction e�ects of quantum matter �elds; this has been done, for example, in [56,
66, 112, 114]. Going one step further, one can attempt to solve this semiclassical Einstein
equation, i.e., �nding a spacetime and a state on that spacetime so that the equation
holds. ¿is problem was analyzed for cosmological spacetimes in [83, 178, 3]. Other works
studied linearized gravity [92, 113], in�ation [81] (see also [4] for a non-standard approach)
and other cosmological models [221] in the algebraic framework. Furthermore, several
researches have studied thermal aspects of quantum �elds on curved spacetime, [49, 82,
196, 197] to name a few, which are arguably of importance to quantum cosmology.

In this thesis several aspects of the works cited above will be summarized and, when
necessary, developed further. To give this work a clearer structure, it is divided into three
parts.

¿e �rst part is mostly intended to lay the foundations of the remaining two parts. In
Chap. 1 a rapid summary of subjects from di�erential geometry relevant to QFT on curved
spacetimes is presented but it also contains a few sections and remarks on subjects which
are usually not covered in standard text books on di�erential geometry, e.g. bitensors.
Chap. 2 focuses on the particular case of Lorentzian geometry including notions of causality,
the classical Einstein equation and cosmology. Analysis, in the broadest sense, will be the
subject of Chap. 3 and in that chapter various results on topology, ∗-algebras, functional
derivatives and their relation to the Banach �xed-point theorem, microlocal analysis and
wave equations will be summarised. In favour of not jumping back and forth between
di�erent subjects in these three sections I chose a rather unpedagogical order and the
reader should be aware that there are many interrelations between the various sections.
¿is should, however, not be a too large an obstacle for the reader. Chap. 4 concerns the
enumerative combinatorics of permutations and appears somewhat unrelated to most of
this thesis. However, combinatorics is very important in many applications of quantum
�eld theory and the results presented in this chapter are important in the moment problem
for quadratic quantum �elds [90]. ¿e contents of this last chapter represent work by the
author in collaboration with Fewster and were published in [95].

In the second part of this thesis several aspects of quantum �eld theory on curved
spacetimes will be discussed. It begins with an introduction to the categorical frame-
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work of locally covariant quantum �eld theory with an emphasize on the �eld algebra
of Klein–Gordon-like quantum �elds in Chap. 5. In Chap. 6 we discuss quantum states
and in particular the construction of adiabatic states of cosmological spacetimes and the
holographic construction of Hadamard states on asymptotically �at spacetimes.

¿e third and last part of this thesis represents the largest portion of novel research
done during the authors Ph.D. studies; here the semiclassical Einstein equation will be
analyzed in detail. ¿e basic notions including the stress-energy tensor for the scalar
�eld and its renormalization will be introduced in Chap. 7. In Chap. 8 the proof of the
author and Pinamonti [3] on the local and global existence of solutions to the semiclassical
Einstein equation will be presented. Finally, in the last chapter of this thesis (Chap. 9), the
�uctuations of the stress-energy tensor will be analyzed and how their backreaction to
the metric may be accounted for; this work in collaboration with Pinamonti was already
presented in [4].

¿is thesis will be concluded with some �nal remarks on the research presented above
in the conclusions. Following this the cited references may be found in the bibliography,
starting with the works (co)authored by the present author.



I
Foundations

Zudem ist es ein Irrtum zu glauben, daß die Strenge in der Beweisführung
die Feindin der Einfachheit wäre. An zahlreichen Beispielen �nden wir im
Gegenteil bestätigt, daß die strenge Methode auch zugleich die einfachere und
leichter faßliche ist. Das Streben nach Strenge zwingt uns eben zur Au�ndung
einfacherer Schlußweisen; auch bahnt es uns häu�g den Weg zu Methoden, die
entwickelungsfähiger sind als die alten Methoden von geringerer Strenge.

—David Hilbert, “Mathematische Probleme” (1900), p. 257.





1
Di�erential geometry

Summary

¿is chapter is mostly a summary of some common de�nitions and standard results
on di�erential geometry and most of its content can be safely skipped by a reader well
acquainted with the topic. Proofs are omitted everywhere except in the last section and
may be found in any text book on di�erential geometry. Nevertheless, the author has
attempted to present the material in such a way that many statements should become
self-evident, although, as always, care should be taken.

In the �rst section (Sect. 1.1) the basic theory of di�erentiable manifolds and vector
bundles is summarized. Here the notions of coordinates, maps between manifolds, vector
bundles and sections, the (co)tangent bundle, (co)vectors and (co)vector �elds, curves,
tensor and exterior tensor product bundles, bundle metrics, frames, di�erential operators,
and the index notation are explained. ¿e second section (Sect. 1.2) is concerned with the
de�nition of connections on vector bundles and the objects that follow from this. ¿at
is, it discusses the notions of curvature, geodesics, and the slightly unrelated concept of
Killing vector �elds. Di�erential forms and integration are introduced in the third section
(Sect. 1.3). In particular we will introduce the de Rham cohomology, the Hodge star and
the dual of the exterior derivative, the codi�erential, which leads to the de�nition of the
Laplace–de Rham operator, and close with a short discussion of integral manifolds.

In the presentation of these three sections the author follows partially that of [142] and
also [6], but these standard de�nitions may be found in many places in the literature.

¿e fourth and last section (Sect. 1.4) treats a more obscure topic: bitensors. Bitensors
are already introduced in an abstract manner in Sect. 1.1.6; a simple, yet important, example
are biscalars: functions on the productM×M of amanifoldM. In this last section concrete
and important cases of bitensors such as Synge’s world function and the van Vleck–Morette
determinant are discussed. It will also form the foundation for the discussion of the
Hadamard coe�cients in Sect. 6.1.3. An excellent resource on bitensors is the review
article [179], which contains most of the �rst part of this section. ¿e second part of this
section is concerned with computational methods that help the calculation of coincidence
limits of bitensors. Here we will discuss the semi-recursive Avramidi method developed
in [169]. We close this section with a recursive method to calculate the coe�cients of an
asymptotic expansion of Synge’s world function in coordinate separation. To the authors
knowledge, this simple and e�cient method has never been fully developed but traces of
it may be found in [168].

1.1 Di�erentiable manifolds and vector bundles

A topological manifold of dimension n is a second-countable Hausdor� space M that is
locally homeomorphic to Rn (i.e., each point of M has a neighbourhood that is home-
omorphic to an open subset of Rn). We o en omit the dimension of the manifold and
simply say: M is a topological manifold.
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M

U
V

φ(U) ψ(V)

φ
ψ

ψ ○ φ−1

Figure 1.1. Two overlapping charts and their transition map.

Since a topological manifoldM is locally homeomorphic to Rn, we can assign coordi-
nates to points ofM in each open neighbourhood U ⊂ M: A (coordinate) chart ofM is a
pair (U , φ) which gives exactly such a homeomorphism

φ ∶ U → φ(U) ⊂ Rn;

we call U its coordinate neighbourhood. ¿e component functions (x1, . . . , xn) = φ are
called (local) coordinates on U .

An atlas A ofM is a family of charts (Ui , φi)i∈N which coverM. If any two overlapping
charts (U , φ), (V ,ψ) in an atlas are smoothly compatible, viz., the transition map

ψ ○ φ−1 ∶ φ(U ∩ V)→ ψ(U ∩ V)
is a smooth, bijective map with a smooth inverse (Fig. 1.1), we say that the atlas is smooth.
We further say that a smooth atlas A on M ismaximal if it is not properly contained in
any larger smooth atlas so that any chart which is smoothly compatible with the charts
of A is already contained in A.

Finally, a smooth manifold is a pair (M ,A), whereM is a topological manifold and A
a maximal smooth atlas. A maximal smooth atlas might not exist and, if it exists, it is not
necessarily unique as shown, e.g., by the existence of exotic R4. Nevertheless, usually a
canonical smooth atlas is understood from context. ¿en we omit the explicit mention
of the maximal smooth atlas A and say: M is a smooth manifold. One can replace the
requirement of the transition maps in an atlas to be smooth by requiring that the transition
maps are Ck , (real-)analytic or complex-analytic (if dimM = 2n, we have R2n ≃ Cn) thus
arriving at the notions of Ck , (real-)analytic and complex-analytic manifolds.

1.1.1 Smooth maps

A real-valued function f ∶ M → R on a smooth manifold M is a Ck , smooth or analytic
function if there exists a chart (U , φ) containing x at every x ∈ M such that the composition
f ○ φ−1 is Ck , smooth or analytic on the image φ(U); the spaces of these function are
denoted Ck(M), C∞(M) and Cω(M) respectively.

More generally, a map f ∶ M → N between two smooth manifolds M and N is Ck ,
smooth or analytic, if there exist charts (U , φ) at x ∈ M and (V ,ψ) at f (x) ∈ N such that
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M
N

U

x

V

F(x)

φ(U) ψ(V)

f

φ
ψ

ψ ○ f ○ φ−1

Figure 1.2. A map between two manifolds.

the composition
ψ ○ f ○ φ−1 ∶ φ(U)→ ψ(V)

is Ck , smooth or analytic (Fig. 1.2). IfM and N have equal dimension and f is a homeo-
morphism such that f and its inverse f −1 are smooth, we call f ∶ M → N a di�eomorphism.
Whenever there exists such a di�eomorphism between, they are di�eomorphic; in symbols
M ≃ N .
1.1.2 Vector bundles

A (smooth)K-vector1 bundle of dimension n

π ∶ E → M

consists of two smooth manifolds E, the total space, andM, the base (space), and a smooth
surjection π, the bundle projection, that associates to every x ∈ M a n-dimensionalK-vector
space Ex = π−1({x}), the �bre of E at x (Fig. 1.3). Moreover, we require that around every x

x

Ex

s(x)
s

M

π

E
π−1({x})

Figure 1.3. A vector bundle and a section.
1K will always be either R or C. In particular,K is a �eld of characteristic 0.
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there exists an open neighbourhood U ⊂ M and a di�eomorphism φ ∶ π−1(U)→ U × Ex
such that its projection to the �rst factor gives the bundle projection: pr1 ○φ = π; φ is
called local trivialization of the vector bundle. A trivialization of a vector bundle over its
whole base is called a global trivialization.

A smoothmap f ∶ E → F between twoK-vector bundles πM ∶ E → M and πN ∶ F → N
is a (vector) bundle homomorphism if there exists a smooth map g ∶ M → N such that
πN ○ f = g ○ πM and the restriction of the map to each �bre f ↾Ex ∶ Ex → Fg(x) isK-linear.
In other words we require that the diagram

E F

M N

f

g

πM πN

commutes and that f is K-linear map on each �bre. By de�nition, if f is a bundle
homomorphism, then g is given by g = πN ○ f ○ π−1M .

Given an open subset U ⊂ M, we can restrict π ∶ E → M to a vector bundle πU ∶
EU → U by setting EU ≐ π−1(U) and πU ≐ π↾U . More generally, a subset E′ ⊂ E such that
π↾E′ ∶ E′ → M is a vector bundle and E′ ∩ π−1(x) is a vector subspace in π−1(x) for all
x ∈ M is called a vector subbundle of E. If each �bre of E′ has dimension k, we say that
E′ is a rank-k subbundle of E. For a subbundle π′ ∶ E′ → M of E we de�ne the quotient
bundle E/E′ as the disjoint union ⊔x∈M Ex/E′x of the quotient spaces of the �bres.

IfM ,N are smoothmanifolds with a smoothmapψ ∶ M → N and a vector-bundle E →
N , we can de�ne on M the pullback bundle ψ∗E as the bundle whose �bres over M are
given by (ψ∗E)x ≐ Eψ(x) for each x ∈ M.

A section of a vector bundle E is a continuous map f ∶ M → E such that π ○ f = idM
(Fig. 1.3); the space of sections of a vector bundle E is denoted by Γ(E). We denote by Γn(E)
the space of Cn sections (Cn maps f ∶ M → E) of the vector bundle E, while the spaces of
compactly supported sections are indicated by a subscript 0, e.g., Γ∞0 (E). Furthermore, a
local section over an open subset U ⊂ M is a section of the vector bundle EU .

If N is another smooth manifold with a vector-bundle F → N and there exists a
smooth map ψ ∶ M → N , the pullback section ψ∗ f ∈ ψ∗F of f ∈ Γ(F) is de�ned as
the section ψ∗ f ≐ f ○ ψ. ¿e opposite of the pullback is achieved by the pushforward
if ψ is a di�eomorphism. Namely, we will say that ψ∗h ≐ h ○ ψ−1 is the pushforward
section of h ∈ Γ(E). If h is compactly supported in a region U ⊂ M, it su�ces that ψ is a
di�eomorphism onto the image of U ; outside of ψ(U) we set ψ∗h identical to zero.
1.1.3 Tangent bundle

LetM be a smooth manifold. A (tangent) vector at x ∈ M is a linear map v ∶ C∞(M)→ R
that satis�es the Leibniz ‘product’ rule

v( f g) = f (x) vg + g(x) v f
for all f , g ∈ C∞(M). ¿e set of all tangent vectors constitutes a vector space TxM
called the tangent space to M at x; it has the same dimension as the base manifoldM for
each x ∈ M. Note that, if a smooth manifoldM is also a vector space, then we can identify
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xv

M

TxM

Figure 1.4. ¿e tangent space of a manifold at a point and a tangent vector.

it with its tangent space, i.e., M ≃ TxM at each point x, which justi�es to the geometric
visualization of the tangent space (Fig. 1.4).

¿e vector bundle TM → M with �bres TxM at x is the tangent bundle ofM. In the
special situation where the n-dimensional smooth manifoldM can be covered by a single
chart, TM is di�eomorphic toM ×Rn.

¿e sections Γ(TM) of the vector bundle are called vector �elds. Applying a vector
�eld v ∈ Γ(TM) to a function f ∈ C∞(M), we obtain a new function (v f )(x)↦ vx f , viz.,
a vector �eld de�nes a linear automorphism on the smooth functions called a derivation.
¿is is exactly the Lie derivative Lv f of a function f ∈ C∞(M) along a vector �eld v:(Lv f )(x) = (v f )(x). ¿e Lie derivative Lvw of a di�erentiable vector �eld w with
respect to another di�erentiable vector �eld v is another vector �eld such that

Lvw ≐ [v ,w] ≐ v ○w −w ○ v
when applied to smooth functions. It satis�es the Leibniz rule and the Jacobi identity

Lv( f w) = (Lv f )w + fLvw , Lu[v ,w] = [Luv ,w] + [v ,Luw]
for all f ∈ C∞(M) and vector �elds u, v ,w ∈ Γ∞(TM).

Given two smooth manifoldsM ,N and a smooth map F ∶ M → N , we can de�ne at
each point x ∈ M the tangent map or di�erential of F at x as the linear map

TxF ∶ TxM → TF(x)N ,
see also Fig. 1.5, which is for every v ∈ TxM and f ∈ C∞(M) the derivation

TxF(v)( f ) = v( f ○ F).
¿e tangent maps of F at all points taken together form TF ∶ TM → TN , the (global)
tangent map or di�erential of F. If N = K, i.e., F is a smooth function on a manifold, we
note that dF ≐ TF is the usual di�erential.

If F is even a di�eomorphism, then TF de�nes a bijection between the vector �elds
onM and N . In this case one can de�ne the pushforward F∗v of a vector �eld v onM by F
as the vector �eld on N given at each x ∈ N by

(F∗v)x ≐ TF−1(x)F(vF−1(x)).
Clearly, this is generally not well-de�ned if F is not a di�eomorphism. Using that F is
invertible, a pullback F∗w of a vector �eld w on N can be de�ned as the inverse of the
pushforward, namely,

F∗w ≐ (F−1)∗w .
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xv

M

TxM

F

F(x)
TxF(v)

N

TF(x)N

Figure 1.5. ¿e tangent map at a point.

¿e tangent map allows us to single out an important type of maps between manifolds:
Immersions are maps F ∶ M → N such that TF is injective; if in addition F is injective
and a homeomorphisms onto its image, then it is called an embedding. Consequently we
say that a subset S ⊂ M is an immersed submanifold if it is a topological manifold and the
inclusion S ↪ M is an immersion; if the topology of S is the subspace topology and the
inclusion is an embedding, then S is called an embedded submanifold. Observe that the
tangent space TxS of a submanifold S ⊂ M is a subspace of TxM at every point x ∈ S. We
can then say that a vector �eld v is tangent to S if vx ∈ TxS at every point x ∈ S.
1.1.4 Curves

A parametrized curve on a smooth manifold M is a map γ ∶ I → M from a connected,
usually open, interval I ⊂ R into the manifold.

A curve γ ∶ [a, b)→ M is called inextendible if there exists a sequence tn converging
to b such that γ(tn) does not converge. ¿is notion readily extends to le -open domains
and open domains.

¿e velocity γ̇(t) at t of a di�erentiable parametrized curve γ ∶ I → M, where I ⊂ R is
an interval, is the vector

γ̇(t) ≐ Ttγ( d
dt

∣
t
) ∈ Tγ(t)M .

Working in the opposite direction, we can try to �nd a curve γ, whose velocity at every
point is determined by a given vector �eld v:

γ̇(t) = vγ(t). (1.1)

Such a curve γ is called an integral curve of v.
For a su�ciently small interval I around 0 a unique integral curve starting at a point

x ∈ M can always be found by solving the di�erential equation (1.1) in a coordinate
neighbourhood of x. ¿e domain of an integral curve cannot necessarily be extended to
the entire real line. We say that a vector �eld is complete if the domain of all of itsmaximal
integral curves, i.e., the integral curves whose domain cannot be extended, is the entire
real line.

¿e �ow ψt of a complete vector �eld v is

ψt(x) = γx(t),
where γx is the maximal integral curve starting at x ∈ M. ¿is de�nes for every t a
di�eomorphism ψt ∶ M → M and the collection of all these di�eomorphisms is a group{ψt}t∈R with unit ψ0, multiplication ψs ○ ψt = ψs+t and inverse ψ−1t = ψ−t . If v is not
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complete, then one can still de�ne a local �ow ψt around a point x with domain U , where
U is a neighbourhood of x, and t ∈ I is restricted to an interval around 0.
1.1.5 Cotangent bundle

At each point x of a smooth manifoldM, we de�ne the cotangent space toM at x, denoted
T∗x M, as the dual space of tangent space at the same point, namely,

T∗x M ≐ (TxM)∗.
¿e elements of the cotangent space T∗x M are called (tangent) covectors; naturally they
are linear functionals on the tangent space. Taking the cotangent spaces at each point as
�bres, we obtain T∗M, the cotangent bundle ofM. ¿e sections of the cotangent bundle are
called covector �elds or one-forms (see Sect. 1.3). ¿e di�erentials (at a point) of functions
discussed above are examples of covectors resp. covector �elds.

A smooth map F ∶ M → N between smooth manifolds M ,N induces at each point
x ∈ M the map TxF ∶ TxM → TF(x)N between the tangent spaces. By duality one can �nd
the transpose map T∗x F ∶ T∗F(x)N → T∗x M, called the cotangent map of F at x, between the
cotangent spaces at F(x) and x, which is given for each v ∈ TxM and ω ∈ T∗F(x)N as

(T∗x F(ω))(v) = ω(TxF(v)).
¿is map then gives the (global) cotangent map T∗F ∶ T∗N → T∗M and thus facilitates the
de�nition of the pullback F∗ω of a covector �eld ω on N by F as the covector �eld onM
given at each x ∈ M by (F∗ω)x = T∗x F(ωF(x)).
Note that, di�erent than the pushforward, the pullback is even de�ned if F is not a dif-
feomorphism. However, if F is a di�eomorphism, we can de�ne the pushforward of a
covector �eld as the pullback via the inverse F−1. ¿at is,

F∗η ≐ (F−1)∗η,
where η is a covector �eld on M. ¿e pushforward of a compactly supported covector
�eld can also be de�ned if F is an embedding and dimM = dimN by setting the F∗η to
zero outside the image of F.

1.1.6 Tensors product bundles

Given twoK-vector bundles π ∶ E → M and ρ ∶ F → M over the same smoothmanifoldM,
we can de�ne the tensor product bundle π ⊗ ρ ∶ E ⊗ F → M, which is just the �brewise
tensor product of vector spaces. Namely, the �bre of E ⊗ F at x ∈ M is (E ⊗ F)x =(π ⊗ ρ)−1({x}) = Ex ⊗ Fx .

In particular, we denote by T p
q (E) the tensor bundle of type (p, q) of a vector bundle E:
T p
q (E) ≐ E⊗p ⊗ (E∗)⊗q;

the tensor bundle of the (co)tangent bundle is simply denoted by T p
qM instead of T p

q (TM).
¿e sections of the tensor product bundle T p

qM are called tensor (�elds), if p = 0, we say
that a tensor is covariant, while we say that it is contravariant if q = 0.
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¿e Lie derivative de�ned in Sect. 1.1.3 generalizes to covariant tensor �elds by duality
in the following way: Given a covariant tensor �eld S ∈ Γ∞(T0qM) and vector �elds
v ,w1, . . . ,wq ∈ Γ∞(TM), theLvS of S along v can be de�ned by

(LvS)(w1, . . . ,wq) ≐ v(S(w1, . . . ,wq)) − S(Lvw1,w2, . . . ,wq)− ⋅ ⋅ ⋅ − S(w1, . . . ,wq−1,Lvwq).
Note that it satis�es the Leibniz rule

Lv(S ⊗ T) = (LvS)⊗ T + S ⊗LvT ,

where T is any other di�erentiable covariant tensor �eld. Since the Lie derivative on
covariant tensor �elds de�nes a Lie derivative on covector �elds, this may be used to de�ne
a Lie derivative on mixed tensor �eld.

¿e pullback or pushforward of a mixed tensor �eld S ∈ Γ(T p
q N) or T ∈ Γ(T p

qM) by a
di�eomorphism F ∶ M → N , is de�ned as the (p + q)-fold tensor product of the pullback
or pushforward map for (co)vector �elds. If S is covariant (i.e., p = 0), then the pullback is
also de�ned if F is not a di�eomorphism.

If F = E, we can de�ne the symmetric and antisymmetric tensor product bundle E ⊙ E
and E∧E as the quotient bundles under the �brewise equivalence relations v⊗w ∼ ±v⊗w
for all v ,w ∈ Ex . More generally, we denote by Sp(E) and⋀p(E) the p-th (anti)symmetric
tensor product bundle which satisfy �brewise the relation

v(x1, . . . , xp) = v(xσ(1), . . . , xσ(p)) or
v(x1, . . . , xp) = (sgn σ)v(xσ(1), . . . , xσ(p))

for v ∈ E⊗px and all σ ∈Sp, the symmetric group of p elements, cf. Sect. 4.1.1. ¿at is, the
�bres of Sp(E) and⋀p(E) are the p-th symmetric (resp. exterior) power of the �bres of E.
Maps Sym ∶ T p

0 (E)→ Sp(E) and Alt ∶ T p
0 (E)→ ⋀p(E) extend from the �brewise maps

Sym (v(x1, . . . , xp)) = 1
p! ∑σ∈Sp

v(xσ(1), . . . , xσ(p)) and

Alt (v(x1, . . . , xp)) = 1
p! ∑σ∈Sp

(sgn σ)v(xσ(1), . . . , xσ(p)),
where v ∈ E⊗px . Moreover, �brewise products ⊙ ∶ Sp(E)x × Sq(E)x → Sp+q(E)x and∧ ∶ ⋀p(E)x ×⋀q(E)x → ⋀p+q(E)x are de�ned as

v ⊙w = Sym(v ⊗w) and v ∧w = (p + q)!
p! q!

Alt(v ⊗w).
Another possibility to combine two vector bundles E and F is the exterior tensor

product E ⊠ F → M ×M. It is de�ned as the vector bundle overM ×M with �bre

(E ⊠ F)x = π−1({x})⊗ ρ−1({x′}) = Ex ⊗ Fx′

over the point (x , x′). ¿e sections of the exterior tensor product T p
qM ⊠ T rsM are called

bitensor (�elds).
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1.1.7 Metrics

Every vector bundle E has a dual bundle π∗ ∶ E∗ → M which has as its �bre E∗x , the dual
vector spaces of the �bres Ex . We call the natural pairing f (v) of an element f ∈ E∗x in the
dual �bre on an element v ∈ Ex in the corresponding �bre a contraction.

A canonical isomorphism between E and E∗ can be constructed if E carries a (bundle)
metric, i.e., a map (⋅ , ⋅) ∶ E ×M E → K

such that the restriction (⋅ , ⋅)x to each �bre Ex is a �brewise non-degenerate bilinear form;
a (positive-de�nite) bundle metric can always be constructed. In other words, a metric
on E is a section in the tensor product bundle Γ(E∗ ⊗ E∗). ¿us a metric induces ametric
contraction between two elements of the same �bre Ex .

¿e dual metric (⋅ , ⋅)∗ is the unique metric on E∗ such that
(ω, η)∗ = (v ,w) with ω = (v , ⋅), η = (w , ⋅)

for all v ,w ∈ Γ(E). Moreover, given metrics (⋅ , ⋅)E and (⋅ , ⋅)F on E and F, they induce
metrics on the tensor product bundle E ⊗ F and the exterior tensor product bundle E ⊠ F.
For the tensor product bundle it is de�ned �brewise for all v ∈ Ex ,w ∈ Fx by

(v ⊗w , v ⊗w)E⊗Fx = (v , v)Ex (w ,w)Fx
and can be extended to arbitrary pairings by polarization and linearity; an analogous
construction works for the exterior tensor product.

In pseudo-Riemannian geometry we �nd the tangent bundle equipped with a continu-
ous symmetric metric usually denoted

g ∶ TM ×M TM → R

with dual metric g∗ on the cotangent bundle. ¿e canonical isomorphism induced by g
between TM and T∗M is given by themusical isomorphisms ‘�at’ ♭ ∶ TM → T∗M and its
inverse ‘sharp’ ♯ ∶ T∗M → TM:

v♭ ≐ g(v , ⋅), ω♯ ≐ g(ω, ⋅).
A tuple (M , g) of a smooth manifoldM with a metric g on its tangent bundle is called a
pseudo-Riemannian manifold.

¿e maximal dimension of subspaces of TxM where gx is negative-de�nite is called
the index Ind(g) of g; since g is continuous and non-degenerate, the index constant over
the manifold. We distinguish in particular two cases:

(a) If Ind(g) = 0 or, in other words, g is pointwise positive-de�nite, we say that g is a
Riemannian metric.

(b) If Ind(g) = 1 (and the manifold at least two-dimensional), we say that g is a Lorentz-
ian metric.2

2¿is choice corresponds to the −+++ convention, which we will use. In particle physics one o en adopts
the opposite convention +−−−, i.e., (M , g) is Lorentzian if Ind(g) = n − 1.
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We say that (M , g) is a Riemannian (Lorentzian)manifold if the metric g is Riemannian
(Lorentzian).

¿e two prototypical examples for a Riemannian and a Lorentzian manifold are Eu-
clidean space andMinkowski space(time): n-dimensional Euclidean space is the smooth
manifold over Rn with a the global chart (Rn , id), coordinate functions (x1, . . . , xn) and
with the Euclidean metric

δ ≐ n∑
i=1 dx

i ⊗ dx i .

In the conventions chosen here, (1 + n)-dimensional Minkowski spacetime is a smooth
manifold modelled on R1+n with the single chart (R1+n , id), coordinate functions(t, x1, . . . , xn) and with theMinkowski metric

η ≐ −dt ⊗ dt + n∑
i=1 dx

i ⊗ dx i (1.2)

in the coordinate frame. Occasionally one uses the shorthandM to denote four-dimen-
sional Minkowski space (R4, η).

Let (M , gM) and (N , gN) be pseudo-Riemannian manifolds and ψ ∶ M → N a di�eo-
morphism. ¿e map ψ is called a conformal isometry if

ψ∗gN = Ω2gM

for some positive function Ω ∈ C∞+ (M). Conformal isometries preserve the angles
between vectors; in particular gN(v ,w)ψ(x) O 0 implies gM(ψ∗v ,ψ∗w)(x) O 0 for all
v ,w ∈ Γ(TN) and x ∈ M. In the special case thatΩ ≡ 1, we say that ψ is an isometry. ¿ese
notions generalize straightforwardly to immersions and embeddings; and we call these
maps conformal immersions/embeddings and isometric immersions/embeddings.

1.1.8 Frames

A local frame of a vector bundle E onM is a set {eµ} of smooth local sections Γ∞(EU) on
a domain U ⊂ M contained in a neighbourhood of a local trivialization such that {eµ(x)}
forms a basis for each �bre Ex over U . ¿e dual frame is the set {eµ} in Γ∞(E∗U) that
satis�es eµ(eυ) = δµυ , i.e., the eµ are the dual basis to eυ. Naturally, given frames {eµ(x)}
and { fυ(x)} of vector bundles E , F on M, they induce frames {eµ(x) ⊗ fυ(x)} on the
tensor product bundle E ⊗ F; the generalization to the exterior tensor product bundle
E ⊠ F is immediate.

If E is equipped with a metric (⋅ , ⋅), we say that the frame {eµ} is orthogonal (K = R)
or unitary (K = C) if it forms an orthonormal basis for each �bre over U , i.e., if

(eµ , eυ) = δµυεµ with εµ ≐ (eµ , eµ) = ±1.
Frames allow us to perform calculations in component form, viz., given a section s ∈

Γ(E) its components in the frame {eµ} onU are given via the dual frame {eµ} as sµ = s(eµ)
such that s = sµeµ. ¿is is the �rst instance where we used the summation convention:
Unless otherwise noted, summation over balanced indices (one upper and one lower) is
always implied.



1.1. Di�erentiable manifolds and vector bundles 17

If s is the section of a (exterior) tensor product bundle and frames on the single
bundles are given, we use multiple indices to denote the sections. For example, if g ∈
Γ(T∗M ⊗ T∗M), we can write

g = gµυ dxµ ⊗ dxυ

in terms of the coordinate covectors.
¿e atlas of a manifold induces natural local frames on the tangent and the cotangent

bundle. If (U , φ) is a smooth chart on M in a neighbourhood of x, then the coordinate
vectors3

∂µ ∣x ≐ (Txφ)−1 (∂µ ∣φ(x))
de�ne a basis on TxM because Txφ ∶ TxM → Tφ(x)Rn ≃ Rn is an isomorphism. Together
with the coordinate functions these coordinate vectors at every point induce natural
coordinates on (TM)U . A local frame for (T∗M)U is then simply the dual frame {dxµ}.

Note that the coordinate vector �elds {∂µ} associated to a coordinate chart {xµ}
form a very special local frame of the tangent bundle. Whereas the commutator [∂µ , ∂υ]
vanishes, this is no longer true in every frame {eµ}, where

[eµ , eυ] = cρµυeρ
has in general non-vanishing commutation coe�cients cρµυ .

1.1.9 Di�erential operators

Given a vector bundle E → M of n-dimensional smooth manifoldM, a linear di�erential
operator of order m (with smooth coe�cients) is a linear map P ∶ Γ∞(E)→ Γ∞(E) which,
in local coordinate {xµ} on U , is given by

P↾U = ∑∣α∣≤m aα(x)∂α ,
where α = (α1, . . . , αn) are multi-indices with ∂α = ∂α11 ⋅ ⋅ ⋅ ∂αnn and the coe�cients aα ∶
Γ∞(E) → Γ∞(E) are linear maps.4 ¿at is, P is locally de�ned as a polynomial in the
partial derivatives {∂µ}.

¿e polynomial
p(x , ξ) = ∑∣α∣≤m aα(x)ξα ,

where ξα = ξα11 ⋅ ⋅ ⋅ ξαnn and ξ is a covector �eld with components ξ = ξµdxµ, is called the
total symbol of P. ¿e leading term of p(x , ξ),

σP(x , ξ) = ∑∣α∣=m aα(x)ξα ,
is the principal part or principal symbol of P. While this is not true for the total symbol, one
can check that the principal symbol is covariantly de�ned as a function on the cotangent
bundle: σP ∶ Γ∞(Sm(T∗M)⊗ E)→ Γ∞(E).

3O en we will use the shorthand ∂µ for ∂/∂x µ .
4Although we will not explicitly state this, sometimes we will use di�erential operators with non-smooth

coe�cients. In that case the coe�cients map into Ck sections.
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Suppose that (M , g) is a pseudo-Riemannian manifold. If the principal symbol σP of
a di�erential operator P is given by the metric

σP(x , ξ) = −gx(ξ, ξ) idEx ,
we say that P is normally hyperbolic or, alternatively, that it is a wave operator. Normally
hyperbolic operators on globally hyperbolic spacetime have a well-posed Cauchy problem
and therefore play an important role in quantum �eld theory on curved spacetime.

Given a second di�erential operator Q on the same vector bundle E, the composition
P ○Q is also a di�erential operator and the principal symbol of the composed operator
is given by the composition of the principal symbols: σP○Q = σP ○ σQ. We say that P is
pre-normally hyperbolic if there exists Q such that P ○Q is normally hyperbolic. One can
show that also Q ○ P is normally hyperbolic and thus Q is pre-normally hyperbolic too
[160].

1.1.10 Index notation

We just saw that in a frame {eµ} of a vector bundle E → M we can calculate the components
of sections with respect to that frame. For example, given two vectors �elds v ,w ∈ Γ(TM)
on a pseudo-Riemannian manifold (M , g), we can write their metric contraction in terms
of their components with respect to the coordinate (co)vector �elds {∂µ} and {dxµ} in a
coordinate neighbourhood:

g(v ,w) = gµυvµwυ .

Repeated indices imply summation by the Einstein summation convention as usual.
Usually the frame is not explicitly mentioned but instead implicitly given by a selection

of letters for the indices. Henceforth the small Greek letters µ, υ, λ, ρ, σ will always be
indices for a coordinate frame of the (co)tangent bundle in the concrete index notation.

When calculating contractions between more complicated tensors the notation in
terms of indices is o en over the abstract index-free notation which quickly becomes
unwieldy. Moreover, if the horizontal position of indices is kept �xed, we can use a metric
to lower and raise indices, e.g., returning to our example, we write

g(v ,w) = vµwµ .

¿at is, we identify the components of the vector �eld v with the components of the
associated covector �eld g(v , ⋅). Contracting a tensor S ∈ Γ(T21 M) with the vector �elds
v ,w, we see the advantage of this notation

S(g(v , ⋅), g(w , ⋅)) = gυρgλσS ρσ
µ vµvυwλ = Sµυλvµvυwλ

¿e ‘natural’ position of the indices of the tensor S must, however, be agreed upon before-
hand.

Note that the formal aspects of this notation do not necessitate the existence of a frame.
¿is leads to Penrose’s abstract index notation. Even in the absence of a concrete frame, we
write for example

S(g(v , ⋅), g(w , ⋅)) = gbd gceSadevavbwc = Sabcvavbwc

Now, an index only labels a slot in the index-free expression and does not carry any numer-
ical value. In particular, Einstein summation convention does not apply to abstract indices
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– it would not even make sense – and double indices only imply (metric) contractions.
We will o en use the small Latin letters a, b, c, d , e as abstract indices for the (co)tangent
bundle.

Both for abstract and concrete index notation it is useful to introduce some short-
hands. Symmetrization and antisymmetrization of tensors are denoted by parentheses
and brackets:

S(ab) ≐ 1
2(Sab + Sba), S[ab] ≐ 1

2(Sab − Sba)
with the obvious generalization to higher-order tensors. Partial and covariant derivatives
(see below) are sometimes indicated by comma and semicolon:

(⋯),a ≐ ∂a(⋯), (⋯);a ≐ ∇a(⋯).
1.2 Connections and curvature

A (Koszul) connection∇E on a m-dimensionalK-vector bundle E → M is aK-linear map∇E ∶ Γ∞(E)→ Γ∞(E ⊗ T∗M) that satis�es the Leibniz rule
∇E(φ f ) = φ∇E f + f ⊗ dφ

for all φ ∈ C∞(M) and f ∈ Γ∞(E). Every vector bundle admits a connection. Henceforth
we will o en drop the superscript indicating the vector bundle that the connection acts on
and simply denote it by ∇. Given a vector �eld v, the connection ∇ de�nes the covariant
derivative along v as ∇v ∶ Γ1(E)→ Γ(E) with

∇v ⋅ ≐ (∇ ⋅)(v).
If, in addition, the vector bundle E is equipped with a C∞ bundle metric (⋅ , ⋅), we say that∇ is ametric connection if

v( f , h) = (∇v f , h) + ( f ,∇vh)
holds for all f , h ∈ Γ1(E). A connection ∇ on E = TM is torsion-free if the Lie bracket of
two vector �elds v ,w is given by [v ,w] = ∇vw −∇wv.

Let E , F be two vector bundles with connections ∇E ,∇F and sections f ∈ Γ1(E),
h ∈ Γ1(F) and u ∈ Γ1(E∗). A connection on the the tensor product bundle E⊗F is de�ned
by ∇E⊗F

v ( f ⊗ h) = (∇E
v f )⊗ h + f ⊗ (∇F

v h).
Moreover, a dual connection is obtained from

(∇E∗
v u)( f ) = v(u( f )) − u(∇E

v f ).
¿is can be used to extend a connection ∇ on a vector bundle E to its dual bundle E∗ and
more generally to the tensor bundle T p

q E.
If ψ ∶ M → N is a di�eomorphism between two manifolds and E → N a vector

bundle with a connection ∇E , then we automatically �nd a unique connection ψ∗∇ on
the pullback bundle ψ∗E. ¿e pullback connection is given by

(ψ∗∇)v(ψ∗ f ) ≐ ψ∗(∇E
dψ(v) f )

for all f ∈ Γ1(E) and v ∈ Γ(TM).
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1.2.1 Levi-Civita connection

¿e Levi-Civita connection is the unique metric connection ∇ on TM with C∞ metric g
that is torsion free. ¿erefore it satis�es the Koszul formula

2g(∇uv ,w) = ug(v ,w) + vg(u,w) −wg(u, v)
− g(u, [v ,w]) − g(v , [u,w]) − g(w , [u, v]). (1.3)

Usually we will call the covariant derivative associated to the Levi-Civita connection
of (M , g) simply the covariant derivative.

In a chart (U , φ) ofM, we have

∇∂µ∂υ = Γρµυ ∂ρ
and we call Γρµυ the Christo�el symbols5 of the Levi-Civita connection ∇ for the
chart (U , φ). ¿e Christo�el symbols are symmetric in their lower indices Γρµυ = Γρυµ
because [∂υ , ∂υ] = 0. Given two vector �elds v ,w ∈ Γ1(TM), written in the coordinate
basis as v = vµ∂µ and w = wµ∂µ, w has covariant derivative

∇vw = vµ(∂wρ

∂xµ
+ Γρµυwυ)∂ρ

along v. ¿e Kozul formula (1.3) yields a formula for the Christo�el symbols

Γρµυ = 1
2
gρλ(∂gµλ

∂xυ
+ ∂gυλ
∂xµ

− ∂gµυ
∂xλ

).
1.2.2 Curvature of a connection

Di�erent from ordinary second derivatives, covariant second derivatives

(∇2 f )(v ,w) = ∇v∇w f −∇∇vw f ,

where v ,w ∈ Γ1(TM) and f ∈ Γ2(E), do not commute in general. ¿e curvature F ∈
Γ(T∗M ⊗ T∗M ⊗ E ⊗ E∗) of a vector bundle E with connection ∇ quanti�es this failure
of the covariant second derivative to commute and we de�ne it as

F(v ,w) ≐ ∇v∇w −∇w∇v −∇[v ,w].
We say that the connection is �at its curvature F vanishes. If E = TM and ∇ is the Levi-
Civita connection of a pseudo-Riemannian manifold (M , g) with smooth metric g, we
denote the curvature by R(v ,w) instead and call it Riemann curvature (tensor) of (M , g).

Let u, v ,w ∈ Γ2(TM) be vector �elds and f ∈ Γ2(E) a section of E. By de�nition
the curvature is skew-hermitian: F(v ,w) = −F(w , v). If the connection ∇ is compati-
ble with a metric (⋅ , ⋅) on E, then we also have that F is skew-adjoint, (F(v ,w) f , f ) =−( f , F(v ,w) f ), and that it satis�es the �rst Bianchi identity

(∇uF)(v ,w) + (∇vF)(w , u) + (∇wF)(u, v) = 0.
5 Note that∇ is not a tensor and thus the Christo�el symbols do not transform as tensors.
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M

Figure 1.6. ¿e parallel transport of a vector along a closed path.

Furthermore, if E = TM and∇ the Levi-Civita connection, also the second Bianchi identity

R(u, v)w + R(v ,w)u + R(w , u)v = 0
holds.

Several other curvature tensors can be derived from the Riemann curvature. ¿e Ricci
curvature (tensor) is de�ned as the symmetric (0, 2) tensorRic(v ,w) = tr(u → R(v , u)(w)),
where u, v ,w ∈ Γ2(TM); if it vanishes, we say that (M , g) is Ricci-�at. Furthermore, we
obtain the Ricci scalar as the contraction of the Ricci tensor Scal ≐ trg Ric = tr Ric♯. Using
the coordinate (co)vectors, we can express the Riemann tensor in component form as:

Rσµυλ = ∂υΓσµλ − ∂λΓσµυ + Γσρλ Γρµυ − Γσρυ Γρµλ .
¿e Ricci tensor and Ricci scalar are then written as Rµυ = −δλσRσµυλ and R = gµυRµυ.
1.2.3 Geodesics

Let γ ∶ I → M be a smooth curve parametrized by an interval I ⊂ R and f ∈ Γ1(γ∗E) a
section in the pullback of the vector bundle E → M. ¿e covariant derivative of f along γ
is given by ∇ f

dt
≐ (γ∗∇γ̇(t)) f ,

i.e., it is a special case of a pullback connection. If the covariant derivative of f vanishes
along γ, we say that f is parallel to γ. ¿erefore connections facilitate the notion of parallel
transport along curves (Fig. 1.6, see also Sect. 1.4.2). Namely, given a s0 ∈ Eγ(t0) at the
point γ(t0), the parallel transport of f0 along γ is the unique solution f of the ordinary
di�erential equation ∇(γ∗ f )/dt = 0 with initial condition ( f ○ γ)(t0) = f0.

Auto-parallel curves, i.e., curves that satisfy

∇
dt
γ∗γ̇(t) = 0,

are called geodesics of the connection ∇. ¿ese are the usual geodesics (local minimizers of
arc length if the metric is Riemannian) with respect to a metric g of a pseudo-Riemannian
manifold (M , g) if ∇ is the Levi-Civita connection with respect to g.

It follows from the theory of ordinary di�erential equations that, given a point x ∈ M
and any vector v ∈ TxM, there exists a unique geodesic γv such that γv(0) = x and
γ̇v(0) = v. Let Υx be the set of vectors v at x that give an inextendible geodesic γv de�ned
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x

γv(1)
v

MTxM

Figure 1.7. ¿e exponential map applied to a vector.

(at least) on the interval [0, 1]. We say thatM is geodesically complete if Υx = TxM at every
x ∈ M. Nevertheless, if there is a vector v ∉ Υx , there exists ε ∈ R such that εv ∈ Υx .

¿e exponential map at x is de�ned as the map (Fig. 1.7)

expx ∶ Υx → M , v ↦ γv(1).
¿at is, remembering that geodesics can be linearly reparametrized, the exponential map
expx maps vectors at x to geodesics through x. For each x ∈ M there exists an open
neighbourhood U ′ ⊂ TxM of the origin on which expx is a di�eomorphism into an open
neighbourhood U ⊂ M of x. If U ′ is starshaped6, then we say that U is geodesically
starshaped (U is a normal neighbourhood) with respect to x. Moreover, if U ⊂ M is
geodesically starshaped with respect to all of its points, it is called geodesically convex.

1.2.4 Killing vector �elds

Given an n-dimensional pseudo-Riemannian manifold (M , g), a Killing vector �eld is a
vector �eld κ such that

Lκ g = 0.
In terms of the Levi-Civita connection on (M , g), this equation may also be written as∇aκb −∇bκa = 0 in the abstract index notation. More generally, a conformal Killing vector
�eld is a vector �eld κ such that

Lκ g = ωg with ω = 2
n
tr(∇κ).

An equivalent de�nition of the Lie derivative of a covariant tensor S ∈ Γ1(T0qM) along
a di�erentiable vector �eld κ is given by

LκS = limt→0 1t (ψ∗t S − S)
where ψt is the (local) �ow of κ. ¿erefore, a vector �eld κ is (conformal) Killing vector
�eld if and only if the �ow that it generates is a family of local (conformal) isometries. In
other words, κ encodes a (conformal) symmetry of (M , g).

Now, if γ is a geodesic and κ a Killing vector �eld, then it holds that g(κ, γ̇) is constant
along γ. ¿at is, the geodesics of (M , g) correspond to conserved quantities under the
symmetry given by κ. If κ is a conformal Killing vector �eld, then g(κ, γ̇) is constant only
if g(γ̇, γ̇) = 0.

6A starshaped neighbourhood S of a vector space V is an open neighbourhood S ⊂ V of the origin such
that tv ∈ S for all t ∈ [0, 1] and v ∈ S.
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1.3 Di�erential forms and integration

As already noted above, sections of the cotangent bundle T∗M are called (di�erential)
1-forms. More generally, sections of the p-th antisymmetric tensor bundle ⋀p(T∗M)
are called (di�erential) p-forms. ¿e set of all smooth p-forms on M is usually denoted
Ωp(M) ≐ Γ∞(⋀p T∗M).
1.3.1 Exterior derivative

¿e exterior derivative d ∶ Ωp(M)→ Ωp+1(M) is the unique generalization of the di�eren-
tial of functions such that:

(a) d f for 0-forms (i.e., functions) f ∈ Ω0(M) is the usual di�erential,
(b) d is a ∧-antiderivation, i.e., it satis�es the product rule

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη,
where ω ∈ Ωp(M) and η ∈ Ωl(M),

(c) d2 = d ○ d = 0,
(d) d commutes with pullbacks.

We say that a form ω is closed if dω = 0 and exact if ω = dη for some form η. While a closed
form is in general not exact, the opposite is obviously always true. ¿e extend to which
closed forms fail to be exact is measured by the de Rham cohomology groups Hp

dR(M) of
the smooth manifoldM

Hp
dR(M) ≐ {ω ∈ Ωp(M) ∣ ω closed}{ω ∈ Ωp(M) ∣ ω exact} .

Replacing p-forms with compactly supported forms in the de�nition above, we obtain the
related notion of the de Rham cohomology group with compact support Hp

dR,0(M).
It is not di�cult to show that the de Rham cohomology is a homotopy invariant and

thus a topological invariant. ¿is is quite astonishing considering that its de�nition relies
on the smooth structure of the manifold. Note that, if M is contractible, i.e., homotopy
equivalent to a point, then all its de Rham cohomology groups vanish.

1.3.2 Integration

A smooth n-form µ ∈ Ωn(M) on a smooth n-dimensional manifoldM is called a volume
form if µ(x) ≠ 0 for all x ∈ M. If such a volume form µ exists, we say thatM is orientable
because µ assigns a consistent orientation to all ofM. Here, we say that a basis v1, . . . , vn ∈
TxM is positively (negatively) oriented at x with respect to ω ∈ Ωn(M) if ω(x)(v1 ⊗ . . . ⊗
vn) ≷ 0. If M is an orientable smooth manifold equipped with a metric tensor g, there
exists a unique volume form µg , the g-volume, which satis�es

µg(x)(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn) = √∣g∣ ≐ √∣det[gx(vi , v j)]∣
for a positively oriented basis v1, . . . , vn ∈ TxM.
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Once integration over Rn is de�ned, i.e., given a domain U ⊂ Rn

∫
U
υ = ∫

U
f dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn = ∫

U
f dx1⋅ ⋅ ⋅dxn

for some f ∈ C∞(Rn) such that υ = f dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn, we can use the a partition of unity,
local charts and linearity of the integral to extend the notion to general smooth manifold.
¿at is, if ω ∈ Ωn(M) is a form of maximal degree on an orientable smooth manifoldM
which is compactly supported in the chart (U , φ), then

∫
M
ω = ±∫

φ(U) φ∗ω,
where the sign depends on the orientation of the chart (U , φ) with respect to ω. ¿us
we obtained a method of integration on manifolds that is invariant under orientation-
preserving di�eomorphism invariant.

Integrating a metric (⋅ , ⋅) on a vector bundle E over an orientable pseudo-Riemannian
manifold (M , g), yields a natural inner product ⟨⋅ , ⋅⟩ on the sections of E: Given f , h ∈
Γ(E), we de�ne

⟨ f , h⟩ ≐ ∫
M
( f , h) µg ,

whenever the integral exists.
Arguably the most important result on integration on manifolds is Stokes’ theorem –

a generalization of the fundamental theorem of calculus. It states that the integral of an
exact form dω ∈ Ωn(M) over a relatively compact open subset U ⊂ M of a n-dimensional
oriented manifoldM is given by the integral of ω over the C1-boundary ∂U :

∫
U
dω = ∫

∂U
ι∗ω,

where ι ∶ ∂U ↪ M denotes the inclusion map. Note that the classical theorems of Gauss
(also called the divergence theorem) and Green are special cases of Stokes’ theorem.

1.3.3 Hodge star and codi�erential

Let (M , g) be an oriented pseudo-Riemannian n-dimensional manifold for the remainder
of this section.

We cannow introduce a smooth bundle homomorphism∗ ∶ ⋀p(T∗M)→ ⋀n−p(T∗M),
the Hodge star (operator); it is the unique bijection such that

ω ∧ ∗ η = g(ω, η)µg
for all ω, η ∈ Ωp(M). ¿is implies the properties

∗ 1 = µg , ∗ µg = (−1)Ind(g), ∗∗ω = (−1)Ind(g)+p(n−p)ω.
It also follows that we can rewrite the inner product ⟨⋅ , ⋅⟩ between di�erential forms
induced by the metric as

⟨ω, η⟩ = ∫
M
ω ∧ ∗ η.

for all ω, η ∈ Ωp(M) for which the integral is de�ned.
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¿e formal adjoint of the exterior derivative with respect to this pairing is the codi�er-
ential δ ∶ Ωp+1(M)→ Ωp(M):

⟨ω, δη⟩ ≐ ⟨dω, η⟩
or, equivalently,

δω ≐ (−1)np+1+Ind(g) ∗d∗ω.
¿e codi�erential is not a derivation and thus it does not satisfy the Leibniz rule. Note
that for one-forms η the codi�erential satis�es δη = −div η♯, i.e., it is equal to minus the
divergence of the related vector �eld.

Analogously to the case of the exterior derivative, a form ω is called coclosed if δω = 0
and coexact if ω = δη for some form η. As a consequence of the bijectivity of the Hodge
star one �nds

Hn−p
dR (M) ≅ {ω ∈ Ωp(M) ∣ ω coclosed}{ω ∈ Ωp(M) ∣ ω coexact} ,

and, in particular,
Hp
dR(M) ≅ Hn−p

dR,0(M)
ifHp

dR(M) is �nite-dimensional; the latter relation is a consequence of the Poincarè duality
theorem.

A normally hyperbolic di�erential operator generalizing the usual d’Alembert operator,
the Laplace–de Rham operator, can be obtained by composition of the codi�erential and
exterior derivative; we de�ne it as

◻ ≐ d ○ δ + δ ○ d.
In abstract tensor notation the Laplace–de Rham operator acting on a (smooth) p-form ω
is given by the Weitzenböck type formula [145, Eq. (10.2)]

(◻ω)a1 ⋅⋅⋅ap = −∇b∇bωa1 ⋅⋅⋅ap +∑
m
Rambωa1 ⋅⋅⋅b ⋅⋅⋅ap + ∑

m≠n Ramban cωa1 ⋅⋅⋅
b ⋅⋅⋅c ⋅⋅⋅ap .

Consequently the Laplace–de Rham operator on scalar functions (0-forms), which we will
also call the d’Alembert operator, is de�ned as

◻ ≐ δd = −∇a∇a ,

which di�ers from the de�nition in some publications of the author [3, 4] by a sign.

1.3.4 Integral submanifolds

While a vector �eld can always be locally integrated to give an integral curve, it is not true
that to every rank k > 1 subbundle of the tangent bundle TM there exists am-dimensional
submanifold of a smooth manifoldM.

Let D ⊂ TM be a smooth rank-k subbundle, a plane �eld, and N ⊂ M an immersed
submanifold. N is an integral manifold of D if

TxN = Dx

for every x ∈ N and we say that D is integrable.
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¿e plane �eld D is locally spanned by smooth vector �elds v1, . . . , vk , i.e., each local
frame around a point x ∈ M is given by the vector �elds vi such that v1↾x , . . . , vk↾x is a
basis of Dx . Frobenius’ theorem states that D is integrable if and only if [vi , v j]x ∈ Dx for
all i , j at every point x.

A plane �eld D is equivalently locally speci�ed in a neighbourhood U ⊂ M by a
collection of covector �elds ω1, . . . ,ωn−k such that

Dx = kerω1↾x ∩ ⋅ ⋅ ⋅ ∩ kerωn−k↾x
for every x ∈ U . ¿e dual to Frobenius theorem is then: D is integrable if and only if there
exist smooth covector �elds {ηi , j ∣ i , j = 1, . . . , n − k} such that

dωi = n−k∑
j=1 ω j ∧ ηi , j ,

in other words, D is involutive. For example, a smooth covector �eld ω speci�es a codi-
mension 1 integral manifold ofM if and only if

dω ∧ ω = 0.
A foliation of dimension k of a smooth manifoldM is a collectionF= (Ni) of disjoint,

connected, (non-empty) immersed k-dimensional submanifolds ofM, the leaves of the
foliation, such that their union is the entire manifold M and each point x ∈ M has a
chart (U , φ) with coordinates (x1, . . . , xn) such that for every leaf Ni that intersects U
the connected components of the image φ(U ∩ Ni) are given by the equations xk+1 =
const, . . . , xn = const.

IfFis a foliation ofM, then the tangent spaces of the leaves form a plane �eld ofM
which is involutive. Conversely, the global Frobenius theorem states that the maximal
integral manifolds of an involutive plane �eld D onM form a foliation ofM.

1.4 Bitensors

Let (M , g) be a pseudo-Riemannian n-dimensional manifold for the remainder of this
section. Henceforth we will use unprimed a, b, . . . and primed a′, b′, . . . abstract indices
to distinguish between objects that transform like tensors at x and x′ respectively. For
example, a bitensor T ∈ Γ(T20M ⊠ T01 M) can be denoted by Tab

c′ (x , x′), where relative
position of primed and unprimed indices is arbitrary. Note that Tab

c′ transforms like a
contravariant 2-tensor at x and as a covector at x′. While many of the operations presented
in this section generalize to sections of arbitrary exterior tensor bundles, we limit the
discussion to bitensors, i.e., sections of T p

qM ⊠ T rsM, in favour of concreteness rather than
generality.

Taking covariant derivatives of bitensors, we further notice that derivatives with respect
to x and x′ commute with each other. ¿at is, every (su�ciently regular) bitensor T(x , x′)
satis�es the identity

T;ab′ = T;b′a ,
where we have suppressed any other indices (we will do the same in the next two para-
graphs). Partial derivatives commute as always.



1.4. Bitensors 27

O en one is interested in the limiting behaviour x′ → x. ¿is limit is called the
coincidence or coinciding point limit and can be understood as a section of a tensor bundle
of M whenever the limit exists and is independent of the path x′ → x. If a unique limit
exists, we adopt Synge’s bracket notation [209, Chap. II.2]

[T](x) ≐ lim
x′→x T(x , x′).

An important result on coincidence limits of bitensors is Synge’s rule: Let T(x , x′) be
a bitensor as above, then [179, Chap. I.4.2]

[T];a = [T;a] + [T;a′] or [T;a′] = [T];a − [T;a] (1.4)

whenever the limits exist and are unique. ¿e second equality is a useful tool to turn
unprimed derivatives into primed ones and vice-versa.

1.4.1 Synge’s world function

In a geodesically convex neighbourhood U we can de�ne the geodesic distance between
two points x , x′ ∈ U as the arc length of the unique geodesic γ joining x = γ(t0) and
x′ = γ(t1). It is given by

d(x , x′) ≐ ∫ t1

t0
gγ(t)(γ̇, γ̇)1/2 dt = (t1 − t0)gx(γ̇, γ̇)1/2

because the integrand is constant along the geodesic as a consequence of the geodesic
equation. A slightly more useful function is Synge’s world function, introduced in [186,
187, 208], which gives half the squared geodesic distance between two points (thus it is
sometimes also called the half, squared geodesic distance). Namely,

σ(x , x′) ≐ 1
2d(x , x′)2 = 1

2(t1 − t0)2gx(γ̇, γ̇). (1.5)

In terms of the exponential map the geodesic distance and the world function can be
expressed as

d(x , x′) = gx( exp−1x (x′), exp−1x (x′))1/2
σ(x , x′) = 1

2 gx( exp−1x (x′), exp−1x (x′)).
Note that geodesic distance d and Synge’s world function σ are invariant under linear
reparametrizations of the geodesic γ. Furthermore, they are both examples of bitensors –
in fact, biscalars.

For the covariant derivatives of the world function it is common to write

σa1 ⋅⋅⋅apb′1 ⋅⋅⋅b′q ≐ ∇a1 ⋅ ⋅ ⋅ ∇ap∇b′1 ⋅ ⋅ ⋅ ∇b′qσ ,

i.e., we always omit the semicolon on the le -hand side. From (1.5) one can compute

σa(x , x′) = (t1 − t0)gabγ̇b and σa′(x , x′) = (t0 − t1)ga′b′ γ̇b′ ,
where themetric and the tangent vector are evaluated at x and x′ respectively. Consequently
we have [σa] = [σa′] = 0.
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According to (1.5), the norm of these covectors is given by the fundamental relation

σaσ a = 2σ = σa′σ a′ . (1.6)

¿erefore, σa and σa′ are nothing but tangent vectors at x and x′ to the geodesic γ with
length equal to the geodesic distance between these points. Actually, (1.6) together with
the initial conditions [σ] = 0 and [σab] = [σa′b′] = gab (1.7)

can be taken as the de�nition of the world function. Coincidence limits for higher deriva-
tives of σ can be obtained by repeated di�erentiation of (1.6) in combination with Synge’s
rule (1.4). In particular one �nds [179]

[σabc] = [σabc′] = [σab′c′] = [σa′b′c′] = 0. (1.8)

An important biscalar that can be constructed from the world function is the van
Vleck–Morette determinant de�ned as [156]

∆(x , x′) ≐ sgn(det gx)(det gx det gx′)−1/2 det ( − σab′(x , x′)) > 0. (1.9)

¿e van Vleck–Morette determinant expresses geodesic (de)focusing: ∆ > 1 implies that
geodesics near x and x′ undergo focusing whereas ∆ < 1 implies that these geodesics
undergo defocusing [179].

From (1.9) one can derive the transport equation

n = σ a(ln∆),a + σ aa = σ a′(ln∆),a′ + σ a′a′ .
¿is, together with the initial condition [∆] = 1, can also be used as an alternative de�nition
of the van Vleck–Morette determinant.

1.4.2 Parallel propagator

Another important biscalar is the parallel propagator. It does exactly what its name suggests:
in a geodesically convex neighbourhoodU it transports a vector of a �bre at a point x′ ∈ U
to a vector at x ∈ U along the unique geodesic γ joining the two points. We will denote it
by the same symbol as the metric. Here we de�ne it only for the tangent bundle, where we
write

va ≐ gaa′va′
with va ∈ TxM and va′ ∈ Tx′M.

¿e parallel propagator satis�es the transport equation

gab′;cσ
c = 0 = gab′;c′ σ c′

because σ a and σ a′ are tangent to the geodesic γ at x and x′ respectively. Together with
the initial condition [gab′ ] = gab = δab (1.10)

this equation may be taken as the de�nition of the parallel propagator. With the parallel
propagator we can raise and lower the (un)primed index in gab′ with the usual metric and
use it to transport (un)primed indices of tensors to their opposite.
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1.4.3 Covariant expansion

It is possible to generalize Taylor’s series expansion method to bitensors (and thereby also
to tensors). ¿e covariant expansion was originally developed for ordinary tensors [186,
187] but can be easily extended to bitensors, see for example [179, Chap. I.6].

While Taylor’s method is used to expand a function f (x′) around a point x in terms
of powers of the distance x′ − x with series coe�cients given by the derivatives of f at x,
the covariant expansion method replaces functions with bitensors, distance with geodesic
distance as given by σa(x , x′) and ordinary di�erentiation with the covariant derivative.
¿at is, given a bitensor Ta(x , x′), where a = a1⋅ ⋅ ⋅am is a list of unprimed indices, we
perform the expansion

Ta(x , x′) = ∞∑
k=0

(−1)k
k!

tab1 ⋅⋅⋅bk(x)σb1 ⋅ ⋅ ⋅σbk . (1.11)

We can then solve for the expansion coe�cients by repeated covariant di�erentiation and
taking the coinciding point limit. Namely, it follows from (1.11) that

ta = [Ta], tab1 = [Ta;b1] − ta;b1 , tab1b2 = [Ta;b1b2] − ta;b1b2 − tab1 ;b2 − tab2 ;b1 ,
etc. If T is a bitensor that also has primed indices, one �rst has to transport the primed
indices to unprimed ones using the parallel propagator gab′ .

Of course, just like any other Taylor expansion, the covariant expansion of a smooth
bitensor does in general not converge and if it converges it is not guaranteed to converge
to the bitensor that is being expanded. Only if the bitensor and the metric are analytic,
we will not encounter these di�culties. However, even then the covariant expansion can
be a very useful asymptotic expansion and we usually truncate it a er a �nite number of
terms. ¿erefore, in following we will work with the covariant series in a formal way and
whenever we write an in�nite sum we implicitly mean that the series is to be truncated
and a �nite remainder term is to be added.

1.4.4 Semi-recursive Avramidi method

As described, e.g., in [69, 169], the ‘naïve’ recursive approach to calculate the expansion
coe�cients of a covariant expansion, as brie�y sketched above, is ine�cient and does
not scale well to higher orders in the expansion because the calculation of coincidence
limits becomes computationally prohibitive. An alternative, non-recursive and elegant
method for the calculation of these coe�cient was proposed by Avramidi [21, 22]. From
the computational perspective, however, also this approach is not necessarily optimal as it
does not always make good use of intermediate result leading to an algorithm which is
space but not time e�cient. A middle way, that we will present here, was implemented
in [169] using a ‘semi-recursive’ method.

Avramidi’s approach rests on the power series solution approach to solving di�erential
equations. ¿erefore it can only be applied where the bitensor solves a di�erential equation,
the transport equations.

With the transport operators

∇σ ≐ σ a∇a and ∇′
σ ≐ σ a′∇a′ . (1.12)
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the world function (1.6) can be expressed as (∇σ − 2)σ = 0 or (∇′
σ − 2)σ = 0. One can

construct additional transport equations by di�erentiating these equations and commuting
covariant derivatives at the cost of introducing curvature tensors. In particular we �nd
[169]

∇′
σ ξa

′
b′ = ξa′b′ − ξa′c′ ξc′b′ − Ra′c′b′d′σ c′σd′ , (1.13a)

∇′
σ∆1/2 = 1

2∆
1/2(n − ξa′a′), (1.13b)

where we have de�ned ξa′b′ ≐ σ a′b′ to avoid confusion later on.
In the next step we take the formal covariant expansion of the bitensor and use the

transport equation to �nd relations between the expansion coe�cients. Let us again take a
bitensor Ta(x , x′) with the expansion (1.11). Applying to it the transport operator ∇′

σ , we
obtain formally

∇′
σTa(x , x′) = ∞∑

m=0
(−1)m
m!

∇′
σ tab1 ⋅⋅⋅bm(x)σb1 ⋅ ⋅ ⋅σbm

= ∞∑
m=1

(−1)m
m!

mtab1 ⋅⋅⋅bm(x)σb1 ⋅ ⋅ ⋅σbm ,
i.e., applying ∇′

σ to the m-th term is equivalent to multiplying it by m:

(∇′
σT)(m) = kT(m).

Contracting two bitensors Sa(x , x′) and Tb(x , x′), we further �nd
Uab = SacT c

b = ∞∑
m=0

(−1)m
m!

k∑
k=0(

m
k
) sacd1 ⋅⋅⋅dk tcbdk+1 ⋅⋅⋅dmσd1 ⋅ ⋅ ⋅σdm ,

i.e., the m-th expansion coe�cient of U is obtained from the lower order coe�cients of S
and T :

Uab (m) = m∑
k=0(

m
k
) Sac (k)T c

b (m−k).
Moreover, we follow Avramidi and introduce

Ka
b (m) ≐ Ra(c1 ∣b∣c2 ;c3 ⋅⋅⋅cm)σ c1 ⋅ ⋅ ⋅σ cm

so that we can write the covariant expansion of Ra′c′b′d′σ
c′σd′as

gaa′ g
b′
b Ra

′
c′b′d′σ

c′σd
′= ∞∑

m=2
(−1)m(m − 2)!Ka

b (m) .

¿ese formal manipulations and de�nitions can now be applied to �nd the covariant
expansion coe�cients of a bitensor. Here we will apply the method to ξa′b′ and ∆

1/2
with their transport equations (1.13). It follows from (1.7) and (1.8) that ξab (0) = δab and
ξab (1)= 0. ¿en, for m ≥ 2, we can easily �nd the relation

−(m + 1)ξab (0)= m−2∑
k=2 (

m
k
) ξac (k)ξcb (m−k) +m(m − 1)K(m).
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For the coe�cients of the square-root of the van Vleck–Morette determinant one gets
∆1/2(0) = 1 from (1.7) and (1.10) and

∆1/2(m) = − 1
2m

m−2∑
k=0 (

m
k
)∆1/2(k)ξaa (m−k)

form > 0. Equivalent relations were found in [169] and implemented in the Mathematica™
package CovariantSeries.

1.4.5 Coordinate expansion of the world function

Our aim in this section is to �nd an expansion of Synge’s world function σ in a coordinate
neighbourhood. ¿ere are di�erent ways to achieve this (see for example [83] for an
approach using Riemannian normal coordinates). Here we use a (formal) power series
Ansatz and write

σ(x , x′) = ∞∑
m=0

1
m!

ςµ1 ⋅⋅⋅µm(x)δxµ1 ⋅ ⋅ ⋅δxµm ,
where we denote by δxµ = (x′ − x)µ the coordinate separation of the points x , x′ in a
chart.

¿e transport equation (1.6) can then be applied to obtain relations between the
coe�cients ςµ1 ⋅⋅⋅µm = ς(µ1 ⋅⋅⋅µm). As consequence of (1.7) and [σµ] = 0, the �rst three
coe�cients are

ς = 0, ςµ = 0 and ςµυ = gµυ .
¿is can be used to derive the relation

2(1 −m)ςµ1 ⋅⋅⋅µm = m−2∑
k=2 (

m
k
) gυρ(ς(µ1 ⋅⋅⋅µk ∣,υ − ς(µ1 ⋅⋅⋅µk ∣υ)(ςµk+1 ⋅⋅⋅µm),ρ − ςµk+1 ⋅⋅⋅µm)ρ)

− 2mς(µ1 ⋅⋅⋅µm−1 ,µm) (1.14)

for m > 2 a er a cumbersome but straightforward calculation.
It is not di�cult to implement (1.14) e�ciently in a modern computer algebra system;

it involves multiplication, transposition and symmetrization of multidimensional arrays
and partial derivatives on the components of these arrays. Making use of the symmetry
of the coe�cients, can reduce computation time and memory usage for higher order
coe�cients, especially for ‘complicated’ metrics, signi�cantly. Even if these symmetries
are not used, this method appears to be more e�cient than the method of [83], as it does
not require to compute Riemann normal coordinates �rst. In fact, because the Riemann
normal coordinates are given by the derivative of the world function, the coe�cients
ςµ1 ⋅⋅⋅µm can also be used to compute the expansion of Riemann normal coordinates:

σµ(x , x′) = gµυδxυ + 1
2(ςυρ,µ + ςµυρ)δxυδxρ + 1

3!(ςυρλ,µ + ςµυρλ)δxυδxρδxλ + ⋅ ⋅ ⋅
Again, this method appears more direct and faster than the one described in [40].

For example, for the Friedmann-Lemaître-Robertson-Walker metric in cosmological
time (see Sect. 2.3.1 for more details),

g = −dt ⊗ dt + a(t)2δi j dx i ⊗ dx j ,
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one �nds with H = ȧ/a
2σ(x , x′) = −δt2 + a2δx⃗2(1 +Hδt + 1

3(H2 + Ḣ)δt2 + 1
12a

2H2δx⃗2

+ 1
12(2HḢ + Ḧ)δt3 + 1

12a
2H(2H2 + Ḣ)δt δx⃗2

+ 1
180(−4H4 − 8H2Ḣ + 2Ḣ2 + 6HḦ + 3...H)δt4

+ 1
360a

2(48H4 + 74H2Ḣ + 8Ḣ2 + 9HḦ)δt2δx⃗2
+ 1

360a
4H2(4H2 + 3Ḣ))δx⃗4 + O(δx7)

in agreement with [83]. Above we denoted by a dot derivatives with respect to cosmological
time t and de�ned the coordinate separation δt = (x′−x)0 and δx⃗2 = δi j(x′−x)i(x′−x) j.
Transforming to conformal time, so that

g = a(τ)2( − dτ ⊗ dτ + δi j dx i ⊗ dx j),
one �nds with H= a′/a

2a−2σ(x , x′) = −δτ2 + δx⃗2 −Hδτ3 +Hδτδx⃗2 − 1
12(7H2 + 4H′)δτ4

+ 1
6(3H2 + 2H′)δτ2δx⃗2 + 1

12H
2δx⃗4 − 1

12(3H3 + 5HH′ +H′′)δτ5
+ 1

12(2H3 + 4HH′ +H′′)δτ3δx⃗2 + 1
12H(H2 +H′)δτδx⃗4

− 1
360(31H4 + 101H2H′ + 28H′2 + 39HH′′ + 6H′′′)δτ6

+ 1
360(15H4 + 61H2H′ + 20H′2 + 30HH′′ + 6H′′′)δτ4δx⃗2+

+ 1
360(15H4 + 37H2H′ + 8H′2 + 9HH′′)δτ2δx⃗4

+ 1
360(H4 + 3H2H′)δx⃗6 + O(δx7),

where we denoted by a prime derivatives with respect to conformal time τ and de�ned
δτ = (x′ − x)0 and δx⃗ as above.

¿e method described above is su�ciently fast to be applied to more complicated
spacetimes such as Schwarzschild or Kerr spacetimes. Nevertheless, for such spacetimes
the expansions become so long, that they easily �ll more than a page if printed up to sixth
order. ¿erefore we will omit them here and suggest that the interested reader implements
(1.14) in a computer algebra system.
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Lorentzian geometry

Summary

Around the turn of the 20th century it became clear that several physical phenomena could
not be satisfactorily described in the framework of Newtonian physics. A er insights
by Lorentz, Poincaré and others, a solution to some of these problems was found and
published by Einstein in 1905 and coined special relativity. In its modern form the changes
introduced by Einstein can be seen to arise from to the union of space and time in a single
spacetime. In the absence of gravity or in the weak gravitational limit our universe appears
to be well described by Minkowski spacetime, its causal structure and its symmetries.

¿e changes introduced by Minkwoski spacetime are generalized by the concept of
Lorentzian spacetimes. ¿is class of pseudo-Riemannian manifolds forms the basis of
general relativity, introduced by Einstein in 1916, which takes the lessons learned from
special relativity to formulate a geometric theory of gravitation. In Einstein’s theory of
gravitation the geometrical background of the Universe is itself dynamical and accounts
for gravity via Einstein’s equation. ¿e total lack of static background with respect to which
length and time measurements can be made, makes general relativity signi�cantly more
di�cult than Newton’s classical theory of gravitation.

Nevertheless, general relativity has made many predictions like gravitational redshi ,
gravitational lensing and, in a sense, the Big Bang, that have been con�rmed with modern
observations. It also forms the basis of modern cosmology which attempts to describe the
evolution of the Universe on large scales from the time of the Big Bang until present times
and predict its ‘fate’.

¿is chapter will give a short introduction to the causal structure of Lorentzian space-
times, to general relativity and to cosmology in three separate sections. ¿e aim of the �rst
section (Sect. 2.1) is the de�nition of globally hyperbolic spacetimes and Cauchy surfaces.
¿erefore it will de�ne notions such as spacetimes, time functions, the causal past and
future of a set, causality conditions, and the splitting of a spacetime into its temporal and
spatial part. In the second section (Sect. 2.2) we give an overview of general relativity
including the stress-energy tensor, the classical energy conditions, Einstein’s equation
and its �uid formulation, and the special case of de Sitter spacetime. Topics related to
theoretical cosmology will be addressed in the third section (Sect. 2.3), where we discuss
Friedmann–Lemaître–Robertson–Walker spacetimes and perturbations around it.

As we are presenting standardmaterial, we will againmostly refrain from giving proofs
or even sketching them. Excellent references for this chapter are the books [27, 80, 167,
216]: While [167] and in particular [27] contain detailed discussions of causal structure of
Lorentzian spacetimes, [216] gives an good overall account of general relativity. ¿e recent
book [80] is, as the title already suggests, mostly focused on cosmology, and may be taken
as a reference for the last section.



34 Chapter 2. Lorentzian geometry

2.1 Causality

2.1.1 Causal structure

¿emetric g of an arbitrary Lorentzian manifold (M , g) distinguishes three regions in
the tangent space: a nonzero v ∈ TxM is

spacelike if gx(v , v) > 0,
lightlike or null if gx(v , v) = 0,

timelike if gx(v , v) < 0,
causal if gx(v , v) ≤ 0.

Furthermore, we de�ne the zero vector v = 0 as spacelike, as e.g. in [167].
Given a time-orientation u on M, viz., a smooth unit timelike vector �eld such that

g(u, u) = −1, a causal vector v ∈ TxM is

future-directed if gx(u(x), v) < 0,
past-directed if gx(u(x), v) > 0.

One o en chooses the time-orientation to be the velocity of a physical �uid. Not every
Lorentzianmanifold can be given a time-orientation and we say that a Lorentzianmanifold
is time-orientable is such a vector �eld exists.

All these notions extend naturally to the cotangent bundle T∗M, sections of both TM
and T∗M and curves. ¿at is, as seen in Fig. 2.1, to each point x ∈ M we can draw a double
cone insideM whose surface is generated by the lightlike curves passing through x; points
lying inside the double cone are lightlike to x, while points lying outside are spacelike to x.

A continuous function t ∶ M → R that is strictly increasing along every future-directed
causal curve is called a time function. Clearly, if t is a time function, then its gradient yields
a time-orientation which is orthogonal to the level surfaces

t−1(c) = {x ∈ M ∣ f (x) = c}, c ∈ R.
¿ese level surfaces give a foliation of the manifold such that each leaf is spacelike and
intersected at most once by every causal curve.

¿e chronological future I+(U) (chronological past I−(U)) of a subsetU ⊂ M is de�ned
as the set of points which can be reached fromU by future-directed (past-directed) timelike
curves. Similarly, the causal future J+(U) (causal past J−(U)) of a subsetU ⊂ M is de�ned
as the set of points which can be reached from U by future-directed (past-directed) causal
curves; their union J(U) ≐ J+(U)∪ J−(U) is the causal shadow of U . If the set U consists
of only one point U = {x}, we write I±(x) and J±(x). Note that I±(x) is always open,
whereas J±(x) is not necessarily closed.1 We say that two subsets U and V are causally
separated (in symbols: U ⨉V ) ifU ∩ J(V) = ∅. ¿ese de�nitions are illustrated in Fig. 2.2.

Aworld line or observer is a timelike future-directed curve τ ↦ γ(τ) such that g(γ̇, γ̇) =−1 and the curve parameter τ is called the proper time of γ. ¿e observer γ is said to be
freely falling, i.e., moving only under the in�uence of gravity, if γ is a geodesic.

1In globally hyperbolic spacetimes (to be de�ned below) J±(x) is always closed.
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x

past lightcone

future lightcone

causal curve

Figure 2.1. Lightcone of a point in a three-dimensional Minkowski spacetime.

¿e causal structure of a Lorentzian manifold is physically signi�cant because it is
used to imply that two events, i.e., two points on the manifold, can only in�uence each
other if one is in the lightcone of the other. In other words, the Lorentzian causal structure
encodes the �niteness of signalling speeds. ¿is is distinctively di�erent from Newtonian
physics, where one event at an absolute time t0 in�uences all other events at a later time
t > t0, no matter the spatial separation.
2.1.2 Covariant splitting

Let (M , g) be a (1 + n)-dimensional Lorentzian manifold with a time-orientation u.
Observe that the integral curves of u can be understood to de�ne a preferred direction
of motion. It is clear that the integral curves of u can be parametrized such that they are
world lines. A local frame such that the components of u are

uµ = (1, 0, . . . , 0)
is called a comoving frame.

Orthogonal to u at each point are the rest spaces of the associated observer. An induced
Riemannian metric tensor for these n-spaces is given by the projected tensor

h ≐ g + u♭ ⊗ u♭,
which has the following properties: habub = 0, h c

a h b
c = h b

a , h a
a = n.

By means of the projection h and the time-orientation u, we can decompose any tensor
into its temporal and spatial parts with respect to the observer. In particular, we can de�ne
the temporal and spatial covariant derivatives of any tensor Sa⋯b⋯ by

Ṡa⋯b⋯ ≐ uc∇cSa⋯b⋯ ,∇cSa⋯b⋯ ≐ hap⋅ ⋅ ⋅h q
b ⋅ ⋅ ⋅h r

c ∇rSp⋯q⋯ .
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I−(U), J−(U)
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e

Figure 2.2. Causal past and future of a set and a causally separated set.

Moreover, de�ne the projected symmetric trace-free (PSTF) parts of a vector �eld va and a
tensor Sab by

v⟨a⟩ ≐ habvb , S⟨ab⟩ ≐ (h c(a h d
b) − 1

n habh
cd)Scd .

¿e kinematics of the world lines given by u is characterized by ∇bua which can be
decomposed as

∇bua = ∇bua − u̇aub = ωab + Θab − u̇aub = ωab + σab + 1
nΘhab − u̇aub , (2.1)

with
ωab ≐ ∇[bua], σab ≐ ∇(aub), Θ ≐ Θa

a = ∇aua , Θab ≐ ∇⟨aub⟩,
where ωab denotes the vorticity (twist) tensor, Θab the expansion tensor, Θ the (volume)
expansion scalar, σab the shear tensor, and u̇a the acceleration. ¿e expansion scalar
measures the separation of neighbouring observers and can be used to introduce a length
scale a via the de�nition

ȧ
a
≐ Θ
n
.

Furthermore, we shall de�ne the magnitudes ω and σ of the vorticity and the shear tensor
by

ω2 ≐ 1
2ωabω

ab , σ2 ≐ 1
2σabσ

ab .

Using the de�nition of the Ricci tensor, we �nd 2∇[a∇b]uaub = Rabuaub which,
together with (2.1), yields an equation describing the dynamics of world line

− Rabuaub = Θ̇ + 1
nΘ

2 + 2(σ2 − ω2) − u̇a;a , (2.2)

where Rabuaub is sometimes called the Raychaudhuri scalar.
If the vorticity tensor vanishes, then, by Frobenius’ theorem, u will be orthogonal to a

foliation of the spacetime by n-dimensional Euclidean hypersurfaces Σ whose metric is
given by (the pullback of) h. If the manifold is also simply connected so that its �rst de
Rham cohomology group vanishes, then there exists even a time function.2 Furthermore,
in the case of vanishing vorticity, ∇ can be directly identi�ed with the Levi-Civita connec-
tion on the spatial slices Σ with metric tensor h. ¿erefore it can be used to derive relations
between the Riemann curvature Rabcd of (Σ, h) and the Riemann curvature Rabcd of the
whole manifold (M , g). ¿e Gauss–Codacci equation [216, Chap. 10] is

Rabcd = h p
a h q

b h r
c h s

d Rpqrs − 2Θa[cΘd]b , (2.3)

2A local time function will always exist if the vorticity is vanishing because every manifold is locally
contractible.
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(a) (b)

Figure 2.3. Sets on the two-dimensional Einstein cylinder: (a) is causally convex, while
(b) is not, as illustrated by the same causal curve in both �gures.

where we have expressed the extrinsic curvature via by the expansion tensor. Upon
contraction with the projection h the spatial Riemann tensor leads to the projected Ricci
tensor and Ricci scalar.

2.1.3 Cauchy surfaces

Although many results hold in greater generality, for physical reasons we will from now
restrict our attention to a subclass of four-dimensional Lorentzian manifolds:

De�nition 2.1. A spacetime is a connected, oriented (positively or negatively oriented with
respect to the volume form induced by the metric) and time-oriented, four-dimensional
smooth3 Lorentzianmanifold (M , g ,±, u). Usually we omit orientation and time-orientation
and identify a spacetime with the underlying Lorentzian manifold (M , g); sometimes, when
no confusion can arise, we will even drop the metric and say that M is a spacetime.

Not all spacetimes are of physical signi�cance because they admit features like closed
timelike curves (i.e., ‘time machines’) that are usually considered unphysical. A spacetime
that does not have any closed timelike curves (i.e., x ∉ I+(x) for all x ∈ M) is said to satisfy
the chronological condition; no compact spacetime satis�es the chronological condition. A
slightly stronger notion is the causality condition, which forbids the existence of closed
causal curves.

Given an open set U ⊂ M, it is called causally convex if the intersection of any causal
curve withU is a connected set (possibly the empty set). ¿at is, a causal curve intersecting
U cannot leave the set and enter it again (Fig. 2.3). If for every neighbourhood V of x ∈ M
there is a causally convex neighbourhood U ⊂ V of x, then the strong causality condition
holds at x. A spacetime (M , g) is called strongly causal if it is strongly causal at every point.
Finally, if (M , g) is strongly causal and J+(x) ∩ J−(y) is compact for every pair x , y ∈ M,
it is called globally hyperbolic.

A Cauchy surface is a subset Σ ⊂ M which is intersected exactly once by every inex-
tendible timelike curve (and at least once by every inextendible causal curve). ¿erefore,
the causal shadow of a Cauchy surface is the entire spacetime. Note that a Cauchy sur-
face may be non-spacelike and non-smooth. Our ability to pose a Cauchy problem on a
spacetime requires the existence of Cauchy surfaces.

3On some occasions we will work with spacetimes whose metric is not smooth. In all these cases we will
mention the regularity of the metric explicitly.
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¿e existence of a Cauchy surface imposes strong conditions on the causality of the
spacetime. Given a spacetime, the following statements are equivalent [35, 167]: the
spacetime

(a) is globally hyperbolic,

(b) admits a Cauchy surface,

(c) admits a smooth time function compatible with the time-orientation.

¿erefore we will be mostly interested in globally hyperbolic spacetimes in the follow-
ing. Every globally hyperbolic spacetime (M , g) is di�eomorphic to R × Σ, where Σ is
di�eomorphic to a smooth spacelike Cauchy surface ofM [34]. If we denote by t the time
function onM, then the level sets of t are isometric to (Σ, gt), where gt is a Riemannian
metric on Σ depending smoothly on t. In fact, (M , g) is isometric toR×Σ with the metric

−β dt ⊗ dt + gt ,
where β is a smooth function onM.

2.2 General relativity

¿roughout this section let (M , g ,±, u) be an arbitrary spacetime, unless otherwise speci-
�ed.

2.2.1 The stress-energy tensor

General relativity describes the interaction of classical matter with the geometrical struc-
ture of the Universe. Giving a precise de�nition of matter is di�cult if not impossible.
Mathematically matter is described in general relativity as a covariant or contravariant
symmetric 2-tensor �eld Tab or Tab, the energy-momentum or stress-energy tensor which
is covariantly conserved ∇bTab = 0.

¿e physical content of the stress-energy tensor Tab becomes clearer once we perform
a covariant splitting relative to u and decompose Tab as

Tab = ρuaub + phab + 2q(aub) + πab , (2.4)

with
ρ ≐ Tabuaub , p ≐ 1

3Tabh
ab , qa ≐ −T⟨a⟩bub , πab ≐ T⟨ab⟩, (2.5)

where ρ denotes the energy density, p the pressure, qa the momentum density (viz., the
dissipation relative to ua) and πab the anisotropic stress. By de�nition of these quantities,
the trace of the stress-energy tensor is given by

T = Ta
a = −ρ + 3p.

Instead of working with the stress-energy tensor it is thus possible to work with these
four quantities and the equations of state relating them. For example, in this decomposition



2.2. General relativity 39

the conservation equation Tab
;b = 0 splits into the energy conservation and themomentum

conservation equation

ρ̇ + (ρ + p)Θ + πabσab +∇aqa + 2u̇aqa = 0, (2.6a)

∇ap + (ρ + p)u̇a + πabu̇b +∇bπab + q̇a + 4
3Θqa + (σab + ωab)qb = 0, (2.6b)

which are the familiar equations for an inertial observer on Minkowski spacetime.
If the anisotropic terms in (2.4) vanish (qa = 0 = πab), the stress-energy takes the

perfect �uid form
Tab = ρuaub + phab = (ρ + p)uaub + pgab (2.7)

and the conservation equations (2.6) reduce to

ρ̇ + (ρ + p)Θ = 0, (2.8a)
∇ap + (ρ + p)u̇a = 0. (2.8b)

One further distinguishes between di�erent forms of the general equation of state p =
p(ρ, s), where s is the medium’s speci�c entropy. Namely, if p = p(ρ), one speaks of a
barotropic �uid, and if p = 0, we have pressure-free matter, also called ‘dust’.

While general relativity imposes no a priori constraints on the form of the matter
content, many possibilities can be considered unphysical in classical physics. ¿e most
common energy conditions are:

(NEC) null energy condition

Tabvavb ≥ 0 for all lightlike va ,

i.e., no negative energy densities along any lightray;

(WEC) weak energy condition

Tabvavb ≥ 0 for all timelike va ,

i.e., no observer detects negative energy densities;

(DEC) dominant energy condition

Tabvawb ≥ 0 for all future-pointing timelike va ,wb ,

i.e., the stress-energy �ux is causal;

(SEC) strong energy condition

Tabvavb − 1
2T ≥ 0 for all unit timelike va ,

i.e., gravity is attractive if Λ = 0, see (2.13).
By continuity, WEC implies NEC and it is also not di�cult to see that DEC implies WEC.
Moreover, the SEC does not imply theWEC but only the NEC.¿e reverse implications are
generally not true. Note that the strong energy condition is too strong for many physically
relevant scenarios.

A generic feature of quantum �eld theory is that none of the energy conditions above
will hold, even in an averaged sense, because of the Reeh–Schlieder theorem [110, 192].
Instead one �nds lower bounds on the averaged energy density, called quantum energy
inequalities, see [87, 88] for a review of the subject.
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2.2.2 Einstein’s equation

Einstein’s equation with a cosmological constant are

Rab − 1
2
Rgab + Λgab ≐ Gab + Λgab = 8πG

c4
Tab , (2.9)

where Gab is called the Einstein (curvature) tensor and Λ the cosmological constant. ¿e
constants on the right-hand side are Newton’s gravitational constant G and the speed of
light c; we shall always choose units such that 8πG = c = 1. O en we will also work with
the trace of (2.9): − R + 4Λ = T . (2.10)

Sometimes one absorbs the cosmological constant into the stress-energy tensor to empha-
size its non-geometric nature.

Note that Einstein’s tensor is covariantly conserved and symmetric, i.e.,

∇bGab = 0 and Gab = G(ab), (2.11)

so that the le -hand side of (2.9) is consistent with the right-hand side and gives a second-
order di�erential equation in the metric. In fact, we can derive (2.9) from the assumption
that the stress-energy tensor of a matter �eld should be the source of a gravitational
potential (the metric tensor) in a second-order di�erential equation. Since the stress-
energy tensor is conserved and symmetric, (2.9) is the only possibility.

Combining (2.9) with (2.10), Einstein’s equations can be recast into the equivalent
form Rab − Λgab = Tab − 1

2Tgab. Together with the imperfect �uid form (2.4) of the
stress-energy tensor this equation yields

Rab − Λgab = 1
2(ρ + 3p)uaub + 1

2(ρ − p)hab + 2q(aub) + πab .
Contractions with the time-orientation ua and the associated projector hab to the orthog-
onal surfaces then give the three equation

Rabuaub = 1
2(ρ + 3p) − Λ, (2.12a)

Rbch b
a uc = −qa , (2.12b)

Rcdh c
a h d

b = 1
2(ρ − p)hab + Λhab + πab . (2.12c)

¿e Raychaudhuri scalar (2.2) attains the physical meaning of the active gravitational
energy by (2.12a) and thus we can state the Raychaudhuri equation as:

Θ̇ + 1
3Θ

2 + 2(σ2 − ω2) −∇au̇a − u̇au̇a + 1
2(ρ + 3p) − Λ = 0. (2.13)

Hence we see that expansion, shear and matter (satisfying the strong energy condition)
promote gravitational collapse, whereas a positive cosmological constant, vorticity and pos-
itive acceleration (due to non-gravitational forces inside the medium) oppose gravitational
collapse. One can also derive di�erential equations for the shear and the vorticity [212].

2.2.3 De Sitter spacetime

A Lorentzian manifold (M , g) is called a vacuum solutions to Einstein’s equation (2.9) if
both Tab and Λ vanish globally. ¿at is, such a solution satis�es

Rab = 0.
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¿e vacuum Einstein equation is the most studied special case of the Einstein equation
and many important and instructive examples fall into this class. ¿e most basic solution
is Minkowski spacetime (M , η), see (1.2), which describes a featureless empty universe. A
rotation-symmetric vacuum solution is given by the famous Schwarzschild solution.

If we also allow for a cosmological constant but keep Tab = 0, we need to solve
Rab = Λgab .

¿emaximally symmetric solutions of this equation fall into three classes depending on
the sign of Λ. We focus here on the case Λ > 0 called de Sitter spacetime; for Λ = 0 one
obtains Minkowski spacetime and for Λ < 0 the so-called anti-de Sitter spacetime.

Four-dimensional de Sitter spacetime is the hyperboloidal submanifold of �ve-dimen-
sional Minkowski spacetime with coordinates (y0, y1, . . . , y4) that satis�es the equation

− (y0)2 + (y1)2 + ⋅ ⋅ ⋅ + (y4)2 = H−2, Λ = 3H2, (2.14)

where H > 0 is called the Hubble constant; thus de Sitter space is topologically R × S3. ¿e
pullback of the Minkowski metric to this space yields a Lorentzian metric.

A global coordinate chart with coordinates (t, χ, θ , φ) can be de�ned by
y0 = H−1 sinh(Ht), yi = H−1 cosh(Ht)z i ,

where z i = z i(χ, θ , φ), i = 1, 2, 3, 4, are the usual spherical coordinates on S3 with unit
radius. In these coordinates the induced metric on de Sitter spacetime reads

g = −dt ⊗ dt +H−2 cosh(Ht)(dχ ⊗ dχ + sin2χ (dθ ⊗ dθ + sin2θ dφ ⊗ dφ))
= −dt ⊗ dt +H−2 cosh(Ht) gS3 ,

where gS3 denotes the standard metric on the 3-sphere. It is clear, that de Sitter spacetime
is globally hyperbolic and the constant time hypersurfaces are Cauchy surfaces.

Another coordinate chart with coordinates (t, x1, x2, x3) is given by
y0 = H−1 sinh(Ht) + 1

2He
Htr2,

yi = eHtx i ,
y4 = H−1 cosh(Ht) − 1

2He
Htr2,

where i = 1, 2, 3 and r2 = (x1)2+(x2)2+(x3)2. It covers only the half of de Sitter spacetime
which satis�es y0 + y4 ≥ 0 and is called the cosmological patch or cosmological chart; it is
di�eomorphic to four-dimensional Euclidean space. Within the cosmological chart, the
metric reads

g = −dt ⊗ dt + e2Htδi j dx i ⊗ dx j = (Hτ)−2(−dτ ⊗ dτ + δi j dx i ⊗ dx j),
where we de�ne the conformal time τ ∈ (0,∞] via

t ↦ τ(t) = −∫ ∞
t

a(t′)−1 dt′.
Note that this metric is a special case of a Friedmann-Lemaître-Robertson-Walker metric,
to be discussed in more generality in Sect. 2.3.
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Figure 2.4. De Sitter spacetime conformally mapped to a cylinder. ¿e cylinder is un-
wrapped and the le and right dotted edges must be identi�ed. x′ is any (�xed) point of
de Sitter spacetime and Z(x , x′) is shown for all choices of x. ¿e dotted line represents
Z = 0. See also [10, Fig. 2].

On de Sitter spacetime, Synge’s world function is known in closed form and is closely
related to the geodesic distance on �ve-dimensional Minkowski spacetime. In fact, since
the chord length between two points x , x′ on de Sitter space considered as the hyper-
boloid (2.14) is

Z(x , x′) ≐ H2ηαβ yα(x)yβ(x′), (2.15)

Synge’s world function on de Sitter spacetime is given by

cos (H√
2σ(x , x′)) = Z(x , x′) (2.16)

for ∣Z∣ ≤ 1, i.e., for x′ are not timelike to x. Equation (2.16) can be analytically continued
to timelike separated points x , x′, whence we �nd

cosh (H√−2σ(x , x′)) = Z(x , x′) for ∣Z∣ > 1.
¿e possible values for the chord length Z are illustrated in a conformal diagram of de
Sitter spacetime in Fig. 2.4. In the cosmological chart, the function Z attains the simple
form

Z(x , x′) = 1 + (τ − τ′)2 − (x⃗ − x⃗′)2
2ττ′ = τ2 + τ′2 − (x⃗ − x⃗′)2

2ττ′ , (2.17)

where x = (τ, x⃗) and x′ = (τ′, x⃗′). Note that the fraction on the right-hand side is a
rescaling of Synge’s world function on Minkowski spacetime by −2ττ′.
2.3 Cosmology

When studying cosmological problems on usually describes the Universe by a homoge-
neous and isotropic spacetime, i.e., one assumes the Friedmann-Lemaître-Robertson-
Walker model. ¿is standard prescription underpins the so called standard model of
cosmology, the ΛCDMmodel of cold dark matter with a cosmological constant. However,
from the presence of structure in the Universe (e.g., galaxy clusters, galaxies, stars, etc.)
we can directly deduce that the Universe is neither homogeneous nor isotropic. Instead it
is believed that one can describe the Universe as nearly homogeneous and isotropic on
cosmological scales so that observed Universe can be modelled as a perturbation around a
FLRW spacetime and homogeneity and isotropy hold in an averaged sense.
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¿e cosmic microwave background (CMB) and the galaxy distribution are o en
believed to give a direct justi�cation of this idea, but since all observations are along the
past light cone and do not measure an instantaneous spatial surface one can only directly
observe isotropy. ¿e link to homogeneity is less clear but if all observers measure an
isotropic CMB, it can be shown that the spacetime is also homogeneous. In this respect,
the current cosmological model is heavily in�uenced by the philosophical paradigm
in cosmology, the Copernican principle, that we live in no distinguished region of the
Universe and that other observers would observe the same. But even under this additional
assumption it is not completely clear that near homogeneity follows since the CMB is not
exactly but only nearly isotropic; see [78, 80, 148, 205] for a discussion of this issue.

Ignoring these shortcomings, we follow the standard approach and assume that we
live in an ‘almost’-FLRW spacetime, i.e., a universe which is correctly described by a
perturbation around a FLRW background. Because such an assignment of a background
spacetime to the physical perturbed spacetime is not unique, one has to deal with a gauge
problem.

Accordingly, we will begin by introducing the FLRWmodel and its properties. ¿en
we will study the general gauge problem and its application in the case of a perturbation
around a FLRW spacetime.

2.3.1 Friedmann-Lemaître-Robertson-Walker spacetimes

One of the simplest solutions of the Einstein equation is the Friedmann-Lemaître-Robertson-
Walker (FLRW) solution, which describes a homogeneous and isotropic, expanding or
contracting universe. Let (M , g) be a spacetime, which is still to be determined, with a
preferred �ow (time-orientation) u. As a consequence of (spatial) isotropy, i.e., the absence
of any preferred (spatial) direction, vorticity, shear and acceleration have to vanish:

ωab = 0, σab = 0, u̇a = 0.
Also the anisotropic terms of the stress-energy tensor have to vanish, i.e.,

qa = 0, πab = 0
so that the stress-energy tensor takes the perfect �uid form (2.7). Consequently the FLRW
model is completely determined by its energy density ρ, pressure p and the expansion Θ.

Since vorticity and acceleration vanish, the spacetime (M , g) is foliated by surfaces Σ
orthogonal to u, which are required to be homogeneous by assumption and thus ρ, p and
Θ are constant on these surfaces. For the same reason there exists locally a time function t,
called cosmological time, that measures proper time, de�ned up to a constant shi , such
that ua = −∇a t. Henceforth we will always assume the time function exists globally so
that the resulting spacetime is stably causal and, in particular, globally hyperbolic.

One can show that the projected Ricci tensor, i.e., the Ricci tensor for the spatial slices
Σ (cf. (2.3)), simpli�es signi�cantly to

Rab = 1
3Rhab = 2

3(ρ + Λ − 1
3Θ

2)hab .
Wemay recast this equation into the more familiar form of the �rst Friedmann equation

H2 = 1
3(ρ + Λ − 1

2R). (2.18)
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with the famous Hubble parameter or Hubble function H ≐ Θ/3 = ȧ/a. ¿e second
Friedmann equation is a special case of the Raychaudhuri equation (2.13) and reads

Ḣ +H2 + 1
6(ρ + 3p) − 1

3Λ = 0. (2.19)

¿ese two equations can be complemented with the energy conservation equation for the
perfect �uid (2.8a) to show that Ra2 is a constant.

We de�ne K ≐ Ra2/3 and notice that the initial value for the scale factor a > 0 is
arbitrary so that we can restrict its value to K = −1, 0,+1. ¿e sign of K determines the local
geometry of the spatial sections: K = −1, 0,+1 correspond respectively to a hyperbolic, a �at
and a elliptic geometry. ¿e topology of the spatial sections is not completely determined
by K and, in fact, there are many possibilities. While K = +1 implies that the spatial
sections are compact, both compact and non-compact spatial section are possible for
K = −1, 0.

Which of these three distinct values for K is realized depends on the energy density
contained in the universe. If the energy density takes on the critical value ρ = ρc ≐ 3H2−Λ,
the spatial surfaces will be �at, while ρ > ρc leads to a spherical and ρ < ρc leads to
a hyperbolical geometry. Furthermore, according to (2.19), an accelerating expansion
(ä > 0) occurs when ρ + 3p < 0 (assuming Λ = 0), i.e., when the strong energy condition
is violated.

A metric tensor realizing the FLRW universe in a local comoving coordinate frame
xµ = (t, r, θ , ϕ) with respect to ua (i.e., u = ∂t) is given (locally) by the FLRWmetric

g = −dt ⊗ dt + a(t)2(dr ⊗ dr + fK(r)2 (dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ)), (2.20)

where

fK(r) ≐
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sin r for K = +1
r for K = 0
sinh r for K = −1.

¿erefore, a spacetime is a FLRW spacetime if and only if its metric attains locally the
form (2.20) in some coordinate system and the time-orientation is given by dt.

Let us de�ne conformal time τ via dτ = dt/a. ¿at is we set

τ(t) = τ0 − ∫ t

t0

1
a(t′) dt′ or τ(t) = ∫ t1

t

1
a(t′) dt′ − τ1

with arbitrary τ0, τ1 and (possibly in�nite) t0, t1 such that the integral converges. Rewriting
(2.20)with respect to conformal time, we obtain the alternativemetric tensor, the conformal
FLRWmetric,

g = a(τ)2( − dτ ⊗ dτ + dr ⊗ dr + fK(r)2 (dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ)) (2.21)

and thus we notice that a �at FLRWuniverse is locally conformally isometric toMinkowski
space.

¿roughout this thesis we mostly work with �at FLRW universes and will �xM ≃ R4

in that case. ¿erefore we can choose globally Cartesian coordinates for the spatial sections
so that we have

g = −dt ⊗ dt + a(t)2δi j dx i ⊗ dx j = a(τ)2( − dτ ⊗ dτ + δi j dx i ⊗ dx j),
where the coordinate functions x i range over the entire real line.
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2.3.2 Gauge problem

¿e correspondence of a background spacetime (M , g0) to the physical spacetime (M , g)
is equivalent to the speci�cation of a di�eomorphism ψ ∶ M → M. Given any other
di�eomorphism ψ′ between the background spacetime and the physical spacetime, we
can construct φ = ψ−1 ○ ψ′. For a tensor �eld S onM to be gauge invariant we require that
φ∗S = S. ¿en it holds that

δS = S − ψ∗S = S − ψ′∗S
and we say that the perturbation δS is a gauge invariant quantity. Otherwise, the pertur-
bation δS is completely dependent on the mapping ψ and even if ψ is speci�ed it will
not be an observable quantity unless the correspondence ψ itself has been speci�ed via
an observational procedure (e.g. via an averaging approach, see the discussion in [79]).
¿erefore the only possibilities for a tensor �eld δS to be gauge invariant is that S is a
constant scalar, a zero tensor or a product of Kronecker deltas [204, Lem. 2.2]).

A slightly di�erent picture which clari�es the perturbation aspect of the gauge problem
is sometimes more helpful. Since the local �ow of any vector �eld v onM is a di�eomor-
phism ψε ∶ M → M, where ε is contained in a su�ciently small interval around 0, we can
describe the gauge problem alternatively in terms of vector �elds. Given a (di�erentiable)
tensor �eld S, we have by de�nition

LvS = limε→0 1ε(ψ∗ε S − S)
or, in other words,

ψ∗ε S = S + εLvS + O(ε2).
¿e gauge choice is now encoded in v, which is completely arbitrary, and we see that S is
gauge invariant to �rst order if only ifLvS = 0 for all v. For S to be exactly gauge invariant
(as discussed above) it must hold thatLn

v S = 0 for all n.
In the light of this discussion, two approaches to perturbations of FLRW spacetimes

seem expedient: Since any quantity describing the inhomogeneity or anisotropy of the
perturbation of the FLRW spacetime must vanish on the background, it will be gauge-
invariant. ¿is leads to the “1 + 3 covariant and gauge-invariant” approach of [79, 119,
147]. ¿e alternative and more commonly used approach due to [25, 140] constructs gauge
invariant quantities directly from the perturbed metric and stress-energy tensor.

2.3.3 Decomposition of tensor �elds

Before we can discuss metric perturbations, we need to investigate the decomposition of
vector and rank-2 tensor �elds into their ‘scalar’, ‘vector’ and ‘tensor’ parts [203].

Consider a non-compact,4 boundaryless, orientable 3-dimensional Riemannian mani-
fold (Σ, γ) with covariant derivative denoted by a vertical bar (e.g., ϕ∣i). Using the Hodge
decomposition theorem, we can uniquely decompose any su�ciently fast decaying smooth
one-form B as

Bi = ϕ∣i + Si , (2.22)

where ϕ is a scalar function and Si is divergence-free.
4¿e decomposition works also for compact manifold but is non-unique in that case.



46 Chapter 2. Lorentzian geometry

Any (0, 2) tensor �eld C can be decomposed as

Ci j = 1
3δi jγ

klCkl + C[i j] + C⟨i j⟩,
i.e., into its trace, its antisymmetric part (equivalent to a vector �eld via the Hodge operator∗) and its trace-free symmetric part C⟨i j⟩. According to [53, ¿m. 4.3], as a consequence
of the Fredholm alternative and an application of (2.22), a su�ciently fast decaying C can
be further uniquely decomposed so that

C⟨i j⟩ = ϕ∣⟨i j⟩ + S(i∣ j) + hi j , (2.23)

where ϕ and S are as before and h is a trace- and divergence-free (0, 2) tensor �eld.
2.3.4 Metric perturbations

As background spacetime we take (M , g0) with g0 the �at FLRW metric in conformal
time, i.e.,

g0 = a2(−dτ ⊗ dτ + δi j dx i ⊗ dx j),
which will be used throughout this section to raise and lower indices. ¿en we de�ne the
perturbed FLRWmetric

a−2g = −(1 + 2ϕ)dτ ⊗ dτ + Bi (dx i ⊗ dτ + dτ ⊗ dx i)
+ ((1 − 2ψ)δi j + 2Ci j)dx i ⊗ dx j

(2.24)

where the scalar �elds ϕ, ψ, the 3-vector �eld B and the trace-free 3-tensor �eld C are
considered ‘small’, i.e., (2.24) should be understand as a 1-parameter family of metrics gε
and each of the perturbation variables as multiplied with a small parameter ε. However, to
avoid cluttering the equations unnecessarily, one usually omits the ε.

¿e ten degrees of freedom encoded in these four quantities exhibit the full gauge
dependence. Before studying the behaviour of g under gauge transformations, let us
rewrite (2.24) using the decompositions (2.22) and (2.23):

Bi = B,i − Si , Ci j = E,i j + F(i , j) + 1
2hi j

with two scalar �elds E , B, two divergence-free 3-vector �elds S , F and a trace-free, trans-
verse 3-tensor �eld h. ¿erefore,

a−2g = − (1 + 2ϕ)dτ ⊗ dτ + (B,i − Si) (dx i ⊗ dτ + dτ ⊗ dx i) +
+ ((1 − 2ψ)δi j + 2E,i j + 2F(i , j) + hi j)dx i ⊗ dx j .

(2.25)

¿is decomposition allows us to consider three types of perturbations separately, namely,
the scalar perturbations caused by ϕ,ψ, E , B, the vector perturbations due to S , F and the
tensor perturbations caused by h. ¿e inverse of the perturbed metric (2.24) up to �rst
order is

a2g−1 = −(1 − 2ϕ) ∂τ ⊗ ∂τ + Bi (∂i ⊗ ∂τ + ∂τ ⊗ ∂i) + ((1 + 2ψ)δ i j − 2C i j) ∂i ⊗ ∂ j .

Let us now determine the transformation behaviour of these perturbation variables
by calculating the gauge dependence of g up to linear order, i.e., the dependence of
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Lξgab = 2∇(aξb) = 20∇(aξb) + O(ε) on ξµ = (ξ0, ξ,i + ξi) with ξi,i = 0, where 0∇ is the
covariant derivative on the background spacetime. Hence we have the transformations:

g00 → g00 − 2a2(ξ0′ +Hξ0),
g0i → g0i + a2(ξ′,i + ξ′i − ξ0,i),
gi j → gi j + 2a2(ξ,(i j) + ξ(i , j) +Hδi jξ0),

where we de�ne the conformal Hubble parameter H≐ aH = a′/a and a prime denotes a
derivative with respect to the conformal time (e.g., a′ = ∂τa). It follows that the perturba-
tion variables transform as

ϕ → ϕ + ξ0′ +Hξ0 ψ → ψ −Hξ0

B → B + ξ′ − ξ0 E → E + ξ
Si → Si − ξ′i Fi → Fi + ξi

and hi j → hi j.
Constructing linear combinations of the perturbation variables, we can now construct

several �rst-order gauge invariant quantities. Two simple (�rst-order) gauge-invariant
functions characterizing the scalar perturbations are the Bardeen potentials Φ,Ψ [25]

Φ ≐ ϕ −Hσ − σ ′, (2.26a)
Ψ ≐ ψ +Hσ (2.26b)

in terms of the shear potential σ ≐ E′ − B.





3
Analysis

Summary

¿e contents of the present chapter may be generously subsumed under “analysis”, hence
the title. We begin with a review of topological vector spaces (Sect. 3.1) starting from the
basics of topology and locally convex topological spaces with the particular example of
function spaces, and �nishing with a discussion duality pairings and tensor products. ¿e
material presented in this section is a excerpt of the results found in the books [133, 137,
176, 195, 211]. As always, although we refer the reader to the books cited above for proofs
of the various statements, care has been taken to present the material in a structured way
so that no results should appear surprising.

¿e second section (Sect. 3.2) concerns the theory of ∗-algebras and thus forms the
foundation of the algebraic approach to quantum �eld theory to be discussed in the later
chapters. Here we will discuss the general features of ∗-algebras and C∗-algebras, states
with an emphasize on the Gel’fand–Naimark–Segal reconstruction theorem, and the Weyl
C∗-algebra. For this section we refer the reader to the books [99, 130]. Details on the Weyl
algebra can be found in [24, 151, 158, 200].

Functional derivatives have always played an important role in physics but on in�nite
dimensional spaces, which appear naturally in quantum �eld theory, they are very subtle.
We introduce two di�erent notions of functional derivatives in the third section (Sect. 3.3):
the directional, or Gâteaux, derivative and the Fréchet derivative. Wewill show that the two
derivatives are closely related. Proofs and more information on the directional derivative
can be found in [116, 163].

In the fourth section (Sect. 3.4) we will pick apart the Banach �xed-point theorem
and prove several statements on the existence and uniqueness of �xed-points and their
properties. ¿ese results will form the basis of the proof existence of solutions to the
semiclassical Eisntein equation to be presented in Chap. 8. Some of the results presented
in the fourth section are already shown in [3] by Pinamonti and the author.

¿e theory of distributions plays a fundamental role in quantum �eld theory: quantum
�elds can be understood as distributions. ¿erefore, we will discuss in detail distribu-
tions and microlocal analysis in the � h section (Sect. 3.5). ¿at is, we will review the
basic de�nition of distributions and distributional sections on manifolds, the nuclearity
property of the associated function spaces and the Schwartz kernel theorem, the Fourier
transform and Schwartz functions and distributions, the wavefront set of distribution and
distributional sections, including its behaviour under various operations such as pullbacks,
and �nally the important propagation of singularities theorem. Good references for this
section are the books by Hörmander [125–128] and also [207, 211]. Several recent results on
the properties of spaces of distributions may be found in [54]. An excellent introduction
to the wavefront set with several examples is [41] by the same author.

In the last section of this chapter (Sect. 3.6) we discuss wave equations. Since bosonic
quantum �eld typically satisfy a wave equation and the Dirac-type equations satis�ed
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(a) (b) (c)

Figure 3.1. Collections of subsets of two points: (a) is a topology, (b) is not a topology
(the empty set and the whole set are missing), (c) is the discrete topology (thus a Hausdor�
topology).

by fermionic quantum �elds are closely related, an understanding of the solutions of
these equations is very important. With some minor modi�cations we mostly follow
[23, 24] to introduce the advanced, retarded and causal propagators of normally and
pre-normally hyperbolic di�erential operators and their relation to the Cauchy problem.
Several extensions of the results in [23, 24], that are also partially stated here, can be found
in [160, 220].

3.1 Topological vector spaces

3.1.1 Topology

A topological space is a set X of points with a notion of neighbourhoods. More concretely,
besides X it consists of a collection τ of subsets, the open sets, such that

(a) both ∅ and X are open,

(b) the union of any collection of open sets is open,

(c) any �nite intersection of open sets is open.

We call the collection τ the topology of X; examples are illustrated in Fig. 3.1.
¿ere are two topologies that can be de�ned for every set. ¿e discrete topology of a

set contains all its subsets, whereas the trivial topology consists only of the empty set and
the set itself.

Given two topologies τ and τ′ on the same set, we can compare them: If τ ⊂ τ′, we
say that τ′ is �ner than τ and that τ is coarser than τ′. It follows that for any set the
trivial topology and the discrete topology are respectively the coarsest and �nest possible
topology.

¿e complements of the open sets are the closed sets. By the de Morgan laws, they
have the following properties: both ∅ and X are close, the intersection of any collection of
closed sets is closed and any �nite union of closed sets is closed. It is possible for a set to
be both closed and open or neither. If the only sets in X that are both open and closed are∅ and X, then X is connected.

¿e closure clU of a set U ⊂ X is the intersection of all closed set that contain U . ¿e
subset U is called dense in X if its closure is X: clU = X.

A neighbourhood of a point x ∈ X is an open set U ∈ τ that contains x. If for each
pair of distinct points x , y in a topological space X there exist disjoint neighbourhoods U
and V of x and y, then it is called a Hausdor� space (Fig. 3.1). Obviously, endowing a set
with the discrete topology turns it into a Hausdor� space.
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A basis (or base) of a topological space X is a collectionB of open sets in X such that
every open set in X can be written as the union of elements ofB; one can say that the
topology of X is generated byB. If the basis of X is countable, we say that X is second-
countable. A local basisB(x) of a point x ∈ X is de�ned as a collection of neighbourhoods
of x such that every neighbourhood of x is a superset of an element of the local basis. ¿e
union of all local bases is a basis. If every point has a countable basis, we say that X is
�rst-countable. Clearly, a second-countable space is �rst-countable but the implication
cannot be reversed.

We say that a map f ∶ X → Y between two topological spaces X ,Y is continuous if
for all x ∈ X and all neighbourhoods V of f (x) there is a neighbourhood U of x such
that f (U) ⊂ V . ¿e space of all continuous maps between X and Y is denoted C(X ,Y)
or C0(X ,Y) and by C(X) = C0(X) if Y = R. A bijective map between two topological
spaces X ,Y is a homeomorphism is both f and f −1 are continuous. X and Y are then called
homeomorphic, i.e., they are topologically equivalent.

Let X be a set and Yi , i ∈ I a family of topological spaces with topologies τi . Given
maps fi ∶ X → Yi , the initial topology on X is the coarsest topology such that the fi are
continuous. It is generated by the �nite intersections of { f −1i (U) ∣ U ∈ τi}. Examples of the
initial topology are the subspace topology, i.e., the topology induced on a subspace X ⊂ Y
by the inclusion map ι ∶ X ↪ Y , and the product topology, i.e., the topology induced on
a product space X = ∏i∈I Yi by the projections πi ∶ X → Yi . Conversely, given maps
fi ∶ Yi → X, the �nal topology on X is the �nest topology such that each fi is continuous.
It is given as

τ = {U ⊂ X ∣ f −1i (U) ∈ τi ∀i ∈ I}.
Important examples are the quotient topology on a quotient space X = Y/ ∼ with the map
given by the canonical projection Y → Y/ ∼ and the direct sum topology on the direct sum
X = ∑i∈I Yi given by the canonical injections Yi → X.

Another application for the initial topology is the topology induced by a pseudometric:
A pseudometric on a set X is a map↦ d(⋅ , ⋅) ∶ X × X → R such that for all x , y, z ∈ X:
(a) d(x , x) = 0,
(b) d(x , y) = d(y, x) (symmetry),
(c) d(x , z) ≤ d(x , y) + d(y, x) (triangle inequality);

the set X together with d is a pseudometric space. If the pseudometric satis�es d(x , y) > 0
(positivity) for all x ≠ y, then it is ametric and X is ametric space. ¿e pseudometric on X
induces the initial topology on X which is generated by the open balls around each point:

B(y) = {x ∈ X ∣ d(x , y) < r}.
A map f ∶ X → Y between two pseudometric spaces with pseudometrics dX , dY is called
an isometry if dX(x , y) = dY( f (x), f (y)) for all x , y ∈ X.

Given a topological space X, a sequence of points (xn) in X converges to a point x ∈ X
if every neighbourhood U of x contains all but �nitely many elements of the sequence. If
X is a pseudometric space, it is called complete if every Cauchy sequence with respect to its
pseudometric converges to a point in X. Every pseudometric space X that is not complete
can be completed. Namely, the completion of X is the (essentially unique) complete
pseudometric space X of which X is a dense isometric subspace.
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A topological (sub)space X is called compact if each of its open covers, viz., a collection
of subsets whose union contains X as a subset, has a �nite subcollection that also contains
X. If X is compact, then every subset Y ⊂ X is also compact in the subspace topology. ¿e
space X is locally compact if every point in X has a compact neighbourhood. Furthermore,
X is called σ-compact if it is the union of countably many compact subsets. Any compact
space is locally compact and σ-compact; the converse is, however, false. One can also show
that every second-countable and locally compact Hausdor� space (thus, in particular,
every topological manifold) is σ-compact. We say that a map f ∶ X → Y between two
topological spaces X ,Y is proper if the preimage of every compact set in Y is compact in
X.

A related concept is that of boundedness. A subset U ⊂ X of a pseudometric space X
is bounded if for each x , y ∈ U there exists a r such that d(x , y) ≤ r.
3.1.2 Locally convex topological vector spaces

A topological vector space is aK-vector space X such that the vector space operations of
addition and scalar multiplication are (jointly) continuous with respect to the topology
of X. Since addition is continuous and the topology therefore translation-invariant, the
topology of X is completely determined by the local basis B(0) at the origin. For the
same reason one can show that X is Hausdor� if and only if {0} is closed. Note that in a
Hausdor� topological vector space every complete subset is also closed. ¿e (topological)
vector space X is called convex if x , y ∈ X implies λx + (1 − λ)y ∈ X for all λ ∈ [0, 1].

Let X ,Y be topological vector spaces andW ⊂ X a subset. A mapping f ∶ W → Y
is uniformly continuous if to every neighbourhood V of zero in Y there exists a zero
neighbourhood U ⊂ X such that for all x , y ∈W

x − y ∈ U Ô⇒ f (x) − f (y) ∈ V .
Every uniformly continuous map is already continuous but the converse is not true. How-
ever, if f is linear and alsoW is a vector subspace, then continuity also implies uniform
continuity. Moreover, ifW is a dense subset, then to every uniformly continuous map
f ∶ W → Y there exists a unique continuous map f ∶ X → Y which extends f . ¿e
extension of a linear map from a dense vector subspace is even uniformly continuous and
linear.

It is usually desirable to have topological vector spaces with additional structures: A
seminorm on aK-vector space X is a map ∥ ⋅ ∥ ∶ X → R such that for all x , y ∈ X and λ ∈ K:
(a) ∥x∥ ≥ 0 (positive-semide�niteness),
(b) ∥λx∥ = ∣λ∣∥x∥ (absolute homogeneity),
(c) ∥x + y∥ ≤ ∥x∥ + ∥y∥ (triangle inequality).

If the seminorm satis�es ∥x∥ > 0 (positivity) for all x ≠ 0, then it is a norm and the vector
space is called normed space. Note that each (semi)norm induces a (translation-invariant)
(pseudo)metric d(x , y) = ∥x − y∥.

Analogously to the pseudometrics, given a family of seminorms {∥ ⋅ ∥i}i∈I on a vector
space X, they induce the initial topology on X. More explicitly, the topology is generated
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by all �nite intersections of {x ∈ X ∣ ∥x∥i < r}, the open balls around the origin.1 If I is
countable, we can assume that I ⊂ N and the topology above is the same topology as the
one induced by the metric

d(x , y) =∑
k∈I

1
2k

∥x − y∥k
1 + ∥x − y∥k ,

where the factors 2−k may be replaced by the coe�cients of any convergent series.
We say that a family of seminorms {∥ ⋅ ∥i} on a vector space X is separating if for every

nonzero x ∈ X there exists an i such that ∥x∥i > 0. It is immediate that a vector space with
topology induced by a family of seminorms is Hausdor� if and only if the seminorms are
separating.

Let X be vector space endowed with a family of seminorms {∥ ⋅ ∥i}i∈I . ¿en we can
de�ne the following topological vector spaces in order of generality:

1. if the family of seminorms is separating, then X is a locally convex (topological vector)
space;

2. if, in addition, I is countable and X is complete with respect to each of its seminorms,
then X is a Fréchet space;

3. if, in addition, the family of seminorms consists of only one norm, then X is a
Banach space.

Finally note that on all these spaces above the Hahn–Banach theorem can be applied.
¿at is, given a K-vector space X with a seminorm ∥ ⋅ ∥ and a linear form f ∶ U → K
on a vector subspace U such that ∣ f (x)∣ ≤ ∥x∥ for all x ∈ U , there exists a (generally
non-unique) linear form f ∶ X → K which extends f such that ∣ f (x)∣ ≤ ∥x∥.
3.1.3 Topologies on function spaces

Important vector spaces are subspaces of the space of functions

YX ≐ { f ∶ X → Y}
between a set X and a topological space Y . YX can be equipped with the topology of
pointwise convergence, which is just the product topology with the projections πx ∶ YX →
Y , f ↦ f (x). In this topology a sequence of functions ( fn) converges to some f if and
only if each fn(x) converges to f (x) at all x.

If (Y , d) is a pseudometric space, the space of functions can be equipped another
topology, the topology of uniform convergence. In this case, a subspace Z ⊂ YX can be
endowed with the pseudometric

d( f , g) = sup
x∈X d( f (x), g(x))

for all f , g ∈ Z, which induces a topology for Z. Note, however, that Z with this topology
is not really a topological vector space because multiplication will fail to be continuous
unless Z is a subset of the bounded functions. A sequence of functions ( fn) converges to
some f if and only if for every ε > 0 there exists a N such that d( fn , f ) < ε for all n ≥ N .

1Conversely, given a basis of the origin it is possible to construct a family of seminorms from its elements.
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If X is a topological space, yet another topology on subspaces Z ⊂ YX is the compact-
open topology. For all compact K ⊂ X and open U ⊂ Y it is generated by the �nite
intersections of { f ∈ Z ∣ f (K) ⊂ U},
i.e., the set of functions that carry compact subsets into open subsets. ¿e compact-open
topology is �ner than the topology of pointwise convergence. If (Y , d) is a pseudometric
space, the compact-open topology is the initial topology induced by the pseudometric on
compact subsets, i.e., it is generated by the �nite intersections of

{ f ∈ Z ∣ supx∈K d( f (x), 0) < r}.
¿erefore it is also called the topology of uniform convergence in compacta and, if X is
compact, it is the same as the topology of uniform convergence. It follows that a sequence
of functions ( fn) converges to some f if and only if for every ε > 0 and compact K ⊂ X
there exists a N such that d( fn(x), f (x)) < ε for all n ≥ N and x ∈ K.

Again, suppose that X ,Y are topological vector spaces and Z ⊂ YX . Z is called equicon-
tinuous if for every neighbourhood of the origin U ⊂ X there exists a neighbourhood of
the origin V ⊂ X such that f (U) ⊂ V for every f ∈ Z. Equicontinuity for a set of one
element is of course the same as continuity.

3.1.4 Duality

A duality or dual pairing ⟨Y , X⟩ is a triple (X ,Y , ⟨⋅ , ⋅⟩) of two vector spaces X ,Y and a
non-degenerate bilinear form ⟨⋅ , ⋅⟩ ∶ Y × X → K, i.e.,

⟨y, x⟩ = 0 for all y ∈ Y implies x = 0
⟨y, x⟩ = 0 for all x ∈ X implies y = 0.

¿e standard example of a duality is that between a vector space X and its algebraic dual X∗,
where the pairing is given by the canonical bilinear form

⟨⋅ , ⋅⟩ ∶ X∗ × X → K, ( f , x)↦ ⟨ f , x⟩ ≐ f (x).
Amore important example is that of the topological dual X′ ⊂ X∗ of a topological space X,
which consists of all continuous linear maps. Note that the pairing ⟨X′, X⟩ is not a proper
duality unless X is Hausdor� because the restriction of the canonical bilinear form to
X′ × X is non-degenerate if and only if X is Hausdor�.

For each x ∈ X the map x ↦ ⟨y, x⟩ gives an injective map of X into Y∗ and an
analogous construction embeds Y into X∗. In the following, the identi�cation of X with a
subspace ofY∗ andY with a subspace of X∗ will always be tacitly assumed unless otherwise
noted.

In particular, X is a subspace of KY and can therefore be equipped with pointwise
topology. ¿is locally convex Hausdor� topology is called the weak topology on X with
respect to ⟨Y , X⟩; statements for weak topology will o en be indicated by the adjective
“weakly”. ¿e weak topology is the coarsest topology such that x ↦ ⟨y, x⟩ is continuous
for all y ∈ Y and one �nds Y = X′ with respect to the weak topology on X. Moreover, if Y
is locally convex, the seminorms on Y yield dual seminorms on X given by

∥x∥i ≐ sup{∣⟨y, x⟩∣ ∣ y ∈ Y with ∥y∥i ≤ 1},
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which also induce the weak topology.
¿e statements above can also be made with the role of X and Y interchanged to

introduce the weak topology on Y with respect to ⟨Y , X⟩. In particular, if Y = X′ and⟨⋅ , ⋅⟩ the canonical bilinear form, then X′ with the weak topology is called the weak dual.
Furthermore, given a subset Y ⊂ X∗, then the induced pairing between Y and X is non-
degenerate if and only if Y is weakly dense in X∗. ¿us any Y is weakly complete if and
only if Y = X∗.

Another (locally convex Hausdor�) topology on X induced by a duality ⟨Y , X⟩ with a
locally convex space Y is the strong topology, which is the topology of uniform convergence
on the bounded subsets of Y ; statements for strong topology will be o en be indicated by
the adjective “strongly”. It is induced by the family of seminorms

∥x∥B = sup
y∈B ∣⟨y, x⟩∣

for each bounded set B ⊂ Y . Again, we can interchange the role of X and Y and call X′
endowed with the strong topology induced by the canonical pairing the strong dual.

If we equip X with the strong topology with respect to ⟨Y , X⟩, then the map x ↦ ⟨y, x⟩
will not be continuous for any y ∈ Y . ¿e �nest topology on X such that this map is
continuous is called theMackey topology but it will not concern us here any further.

Finally, note that the dual of a Banach space is always a Banach space, but the dual of a
Fréchet space that is not Banach is never a Fréchet space.

3.1.5 Tensor products on locally convex spaces

Given two locally convex topological vector spaces X ,Y there are many di�erent ways to
de�ne a family of seminorms for the space X ⊗ Y . ¿erefore there is no natural topology
for X ⊗ Y if X or Y is in�nite-dimensional, whence one speaks of di�erent topological
tensor products. ¿e most common topological tensor products are the projective and
injective tensor product introduced below.

¿e projective tensor product topology equips the algebraic tensor product X ⊗ Y with
the �nest topology such that ⊗ ∶ X × Y → X ⊗ Y is jointly continuous. ¿at is, it is the
�nal topology de�ned by the projections πX ∶ X → X ⊗ Y , πY ∶ Y → X ⊗ Y . Equivalently,
the topology is induced by the seminorms

∥u∥i , j = inf {∑k∥xk∥i∥yk∥ j ∣ u =∑k xk ⊗ yk}
for all u ∈ X ⊗ Y and where the in�mum runs over all representations of u. ¿e resulting
locally convex space is usually denoted X ⊗π Y and its completion X ⊗̂π Y .

A coarser topology is de�ned by the injective tensor product topology; it is the �nest
topology such that⊗ ∶ X×Y → X⊗Y is separately continuous. Let X′,Y ′ be the weak duals
of X ,Y . Note that X⊗Y can be embedded into the space of bilinear separately continuous
maps X′ × Y ′ → K, denoted B(X ,Y), with the topology of uniform convergence U × V
on all equicontinuous sets U ⊂ X and V ⊂ Y . ¿at is, the topology is generated for all
U × V and open I ⊂ K by the �nite intersections of

{ f ∈ B(X ,Y) ∣ f (U × V) ⊂ I}.
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X ⊗ Y can now be endowed with the corresponding subspace topology. Seminorms that
induce this topology are given by

∥u∥i , j = sup{∣( f ⊗ g)(u)∣ ∣ f ∈ X′, g ∈ Y ′ such that ∥ f ∥i = ∥g∥ j = 1}.
¿e space X ⊗ Y equipped with the injective topology is usually denoted X ⊗ε Y and its
completion is denoted X ⊗̂ε Y . Observe that C(X ,Y) ≃ C(X) ⊗̂ε Y if Y is complete.

Locally convex spaces on which the injective and projective tensor product agree are
called nuclear. More precisely, we say that a locally convex space X is nuclear if

X ⊗ε Y = X ⊗π Y or, equivalently, X ⊗̂ε Y = X ⊗̂π Y

for every locally convex space2 Y in which case we simply write X ⊗ Y . If both X and
Y are nuclear, then also X ⊗ Y is nuclear. Moreover, if a subspace of a nuclear space is
nuclear and the quotient space of a nuclear space by a closed subspace is nuclear.

A more useful characterisation of nuclear spaces is in terms of summable sequences.
Denote by ℓ1(X) the X-valued summable sequences, i.e., the set of sequences (xn) in X
such that all unordered partial sums∑n∈I⊂N xn converge in X. Further, denote by ℓ1{X}
the X-valued absolutely summable sequences, i.e., the set of sequences (xn) in X such that∑n∥xn∥i <∞ for all seminorms ∥ ⋅ ∥i of X. ¿en X is nuclear if and only if

ℓ1(X) = ℓ1{X}
and hence, by the above observation, both sides are equal to ℓ1⊗X = ℓ1⊗ε X = ℓ1⊗π X. In
other words, X is nuclear if and only if every summable sequence in X is already absolutely
summable. Nuclear spaces are therefore very similar to �nite-dimensional spaces and,
while every �nite-dimensional locally convex space is nuclear, no in�nite-dimensional
normed space is.

We �nish this section by stating what can be called the abstract kernel theorem for
Fréchet spaces:

(X ⊗ Y)′ ≃ X′ ⊗ Y ′ and (X ⊗̂ Y)′ ≃ X′ ⊗̂ Y ′
for every X ,Y such that X (or Y) is nuclear and where all duals are strong duals.

3.2 Topological ∗-algebras
A topological ∗-algebra is a topological algebra Aover C, i.e., a topological C-vector space
with a separately continuous ring multiplication, together with a continuous involution ∗.
¿at is, there is an automorphism

∗ ∶ A→ A, x ↦ x∗,
which is antilinear and involutive such that

(a) (ax + by)∗ = ax∗ + by∗,
(b) (xy)∗ = y∗x∗,

2Actually it is su�cient to check equality for Y = ℓ1 , see below.
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(c) (x∗)∗ = x
for all x , y ∈ Aand a, b ∈ C. If, in addition,Ahas a multiplicative unit 1, we say thatA is
a unital ∗-algebra. Elements x , y of the algebra Aare called

adjoint if x∗ = y,
self-adjoint if x∗ = x ,

normal if x∗x = xx∗,
unitary if x∗x = 1 = xx∗,

where unitarity obviously requires the existence of a unit element. Note that 1 is always
self-adjoint.

A ∗-subalgebraI⊂ Ais called a le (right) ∗-ideal if yx (resp. xy) is inIfor all y ∈ I
and x ∈ A. If the subalgebra is both a le and right ∗-ideal, it is just called a (two-sided)∗-ideal. It follows that an idealIof A is a ∗-ideal if and only ifI∗ = I.

¿e homomorphisms that arise between ∗-algebras, called ∗-homomorphisms, are
those that preserve in addition to the multiplicative also the involutive structure, i.e., a map
α ∶ A→B is a ∗-homomorphisms if it is an algebra-homomorphism and α(x∗) = α(x)∗
for all x ∈ A. If the ∗-algebras are unital, we also demand that ∗-homomorphisms be
unit-preserving.

O en one needs a ∗-algebra which also has the structure of a normed vector space. In
the case of ∗-algebras, it makes sense to require the norm to satisfy an additional property:
A norm ∥ ⋅ ∥ ∶ A→ R is said to be a C∗-norm if

∥x∗x∥ = ∥x∥2
for all x ∈ A. ¿is di�ers from some de�nitions of C∗-norms because, in fact, every
C∗-norm is automatically a ∗-isomorphism and submultiplicative, i.e.,

∥x∗∥ = ∥x∥ and ∥xy∥ ≤ ∥x∥∥y∥
for all x , y ∈ A[199].

If a ∗-algebraAcomes equipped with such a C∗-norm ∥ ⋅ ∥ that turnsA into a Banach
space, then it is called a C∗-algebra. In a C∗-algebra, ring multiplication and inversion
are continuous operations with respect to the norm; the continuity of addition, scalar
multiplication and involution are obvious. ¿e condition for a unital C∗-algebra to have
a C∗-norm imposes such strong conditions on its algebraic structure that the algebra
uniquely determines the norm. Namely,

∥x∥2 = ∥x∗x∥ = sup {∣λ∣ ∣ x∗x − λ1 is not invertible}
for every x ∈ A. A ∗-homomorphism α ∶ A→Bbetween two unital C∗-algebras is thus
always norm-decreasing: ∥α(x)∥ ≤ ∥x∥.
3.2.1 States

Given a ∗-algebra A, one can consider its algebraic dual, the space of linear functionals
on A. A linear functional ω ∈ A∗ on a unital ∗-algebra A is positive if it satis�es

ω(x∗x) ≥ 0
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for all x ∈ A. If, A is unital and ω(1) = 1, we say that ω is normalized. A functional ω that
is both positive and normalized is called a state. If the ∗-algebraAcomes equipped with a
topology, we always assume that ω is continuous, i.e., we consider the topological dual A′
instead of the algebraic one; an algebraic state on a C∗-algebra is automatically continuous
with respect to the C∗-norm.

Given positive ω ∈ A′, it follows that for all x , y ∈ A
ω(x∗y) = ω(y∗x),

∣ω(x∗y)∣2 ≤ ω(x∗x)ω(y∗y),
where the second line is called the Cauchy–Schwarz inequality. If A is unital, the �rst
equation implies that every positive ω is hermitian: ω(x∗) = ω(x).

A state ω is pure if every other state η that is majorized by it, ω(x∗x) ≥ η(x∗x), is
of the form η = λω with λ ∈ [0, 1]. Consequently, a pure state cannot be written as the
convex sum of two other states. States that are not pure are calledmixed.

¿e positive linear functionals equips Awith a degenerate inner product via the
antilinear pairing ⟨x , y⟩ = ω(x∗y) which can be turned into a pre-Hilbert space by taking
the quotient by the degenerate elements. ¿is is the essential content of the famousGel’fand–
Naimark–Segal construction, usually abbreviated as GNS construction, which we will state
a er the following de�nition.

A ∗-representation π of a ∗-algebra A is a ∗-homomorphism into the C∗-algebra of
linear operators on a common dense (with respect to the norm ∥ ⋅ ∥ = ⟨⋅ , ⋅⟩1/2 on the Hilbert
space) domain D of a Hilbert space H. Note that the ∗-representation π is continuous
with respect to the uniform operator topology, i.e., the topology induced by the operator
norm ∥T∥op = sup {∥Tx∥ ∣ x ∈ Dwith ∥x∥ ≤ 1}.
Moreover, if the domain D is complete in the graph topology induced by the family of
seminorms ∥ ⋅ ∥x = ∥π(x) ⋅ ∥, we say the the ∗-representation π is closed.

If there exists a vector Ω ∈ H such that π(A)Ω = {π(x)Ω ∣ x ∈ A} is dense in H,
then the ∗-representation is called cyclic andΩ cylic vector. If π(A)Ω is even dense in D in
the graph topology, then π and Ω are called strongly cyclic. ¿e state ω(x) = ⟨π(x)Ω,Ω⟩
de�ned by a cyclic vector Ω of a cyclic ∗-representation π is pure if and only if the only
subspaces le invariant by π(A) are the trivial ones.
Theorem 3.1 (GNS construction). Let ω be a state3 on a unital topological ∗-algebra A.
¿en there exists a closed (weakly continuous) strongly cyclic ∗-representation π of Aon a
Hilbert space Hwith inner product ⟨⋅ , ⋅⟩ and strongly cyclic vector Ω such that

ω(x∗y) = ⟨π(x)Ω, π(y)Ω⟩
for all x , y ∈ A. ¿e representation π is unique up to unitary equivalence.

¿is is a standard theorem and a proof can be found in many places, e.g., in [180].
Working with general ∗-algebras, we have not excluded the case of ∗-representations
onto unbounded operators. For that reason it is not possible to uniquely extend the
representation to the whole Hilbert space, and hence self-adjoint elements of the algebra
might not be represented by self-adjoint operators but only symmetric operators. ¿ese
problems do not occur if one applies the GNS construction to C∗-algebras.

3Actually it is enough for ω to be a positive; the normalization is not necessary for the theorem to hold.
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3.2.2 Weyl algebra

Set V to be a R-vector space and σ ∶ V × V → R an antisymmetric bilinear form (i.e.,
a pre-symplectic form).4 AWeyl ∗-algebra W for (V , σ) is a unital involutive algebra
generated by (nonzero)Weyl generatorsW , i.e., symbolsW(⋅) labelled by the vectors in V ,
which satisfy, for all v ,w ∈ V , the relations
(a) W(v)W(w) = exp ( i

2σ(v ,w))W(v +w),
(b) W(v)∗ =W(−v).

¿erefore the Weyl generators also have the following properties:

(c) W(0) = 1,

(d) W(v)∗ =W(−v) =W(v)−1,
(e) (W(v))v∈V are linearly independent.

Since W is generated by unitaries, every ∗-representation is necessarily by bounded
operators. Moreover, between two Weyl ∗-algebras generated by Weyl generators W
and W ′ for (V , σ) there exists a unique ∗-isomorphism α completely determined by
α ○W =W ′.

One can endow Wwith a C∗-norm, theminimal regular norm
∥x∥ = sup{ω(x∗x)1/2 ∣ ω is a state on W}

for all x ∈ W. If the bilinear form σ is non-degenerate, one can show that all C∗-norm
over W are equal. We call the completion W of a Weyl ∗-algebra W, with respect to
the minimal regular norm, theWeyl C∗-algebra. It is unique up to ∗-isomorphism and,
in particular, simple, viz., it has no non-trivial closed ∗-ideals, if and only if σ is non-
degenerate [151].

¿e map R ∋ λ ↦W(λv) is not continuous in W, because ∥W(v) −W(w)∥ = 2 for
all distinct v ,w ∈ V as a consequence of the spectral radius formula. A ∗-representation π
of Won a Hilbert space H is called regular if the one-parameter unitary groups

λ ↦ (π ○W)(λv), v ∈ V ,
are strongly continuous. If the ∗-representation induced by a state on W is regular, we
also call the state regular. Invoking Stone’s theorem (π ○W)(λv), we can �nd a family of
self-adjoint operators F(⋅) on H, labelled by vectors in V , such that

(π ○W)(λv) = exp (iλF(v));
the map F is called the �eld operator and is generally unbounded.

A strongly regular state [23] is a regular state for which the operators F(v), v ∈ V , have
a common dense domain D ⊂ H, which is closed under the action of F, and for which
v ↦ F(v)w is continuous for �xed w ∈ V . For strongly regular states the �eld operator is
linear in its argument and thus a self-adjoint operator-valued distribution.

4We follow [151] and will not assume that σ is non-degenerate. In fact it is su�cient to assume that σ is
linear in its �rst or second argument.



60 Chapter 3. Analysis

3.3 Derivatives

Various di�erent notions of derivatives on topological vector spaces exist in the literature,
see [20] for a survey and history of the topic. On in�nite-dimensional spaces these
derivatives are inequivalent and care must be taken to make precise which derivative
is meant. On Banach spaces there exists the notable example of the Fréchet derivative.
However, many spaces of interest in physics are not normed and so one must work with
derivatives on more general spaces. Below we will de�ne a directional derivative in the
sense of Gâteaux and later compare it with the Fréchet derivative on Banach spaces.

3.3.1 The directional derivative

Let X ,Y be two topological vector spaces andU ⊂ X open. ¿e (directional) derivative of a
function f ∶ U → Y at x ∈ U in the direction h ∈ X is de�ned as the map d f ∶ U × X → Y ,

dh f (x) ≐ d f (x; h) ≐ limε→0 1ε( f (x + εh) − f (x)) = d
dε

f (x + εh)∣
ε=0 , (3.1)

if the limit exists. In particular, if f is a continuous linear function, then its derivative is
d f (x; h) = f (h).

Note that the nomenclature here follows that of [116, 163] and di�ers from that in [3],
where Pinamonti and the author called the same derivative Gâteaux derivative. ¿e
reason for this choice of a more neutral name is that the name “Gâteaux derivative” has
sometimes been used for slightly di�erent derivatives. However, all de�nitions known to
the author agree whenever the derivative is both linear and continuous in the direction of
the derivative.

It should be clear from the de�nition of the directional derivative, that the ordinary
and partial derivative are special cases of the directional derivative for functions from
Euclidean Rn to R or C. Consequently the directional derivative is also closely related to
the local form of the covariant derivative given by a connection on a vector bundle.

¿e function f is called di�erentiable at x if the limit exists for all h ∈ X and simply
di�erentiable if it is di�erentiable at every x ∈ U . Moreover, f is continuously di�erentiable
or C1 on U if the map d f is continuous (in the induced topology on U × X). Higher
derivatives may be de�ned recursively by

dhn ⋅ ⋅ ⋅dh1 f (x) ≐ dnh1 ,...,hn f (x) ≐ limε→0 1ε(dn−1h1 ,...,hn−1 f (x + εhn) − dn−1h1 ,...,hn−1 f (x))
and we say that f is Cn if d f is Cn−1; if f is Cn for all n ∈ N, then we say that f is C∞ or
smooth.

Continuity of the derivative already impliesmany other properties if the involved vector
spaces are locally convex. Hence, let X ,Y be locally convex spaces and f ∶ X ⊃ U → Y be
continuously di�erentiable. ¿en it can be shown that [116, 163]:

(a) the fundamental theorem of calculus

f (x + h) − f (x) = ∫ 1

0
d f (x + th; h)dt

holds if x + [0, 1]h ⊂ U ,
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(b) f is locally constant if and only if d f = 0,
(c) the map h ↦ d f (x; h) is linear,
(d) f is continuous (not necessarily true if X ,Y are not locally convex!),

(e) if f ∈ Cn, the map (h1, . . . , hn)↦ dn f (x; h1, . . . , hn) is symmetric and multilinear
and we can use yet another notation

⟨dn f (x), h1 ⊗ ⋅ ⋅ ⋅ ⊗ hn⟩ ≐ dn f (x; h1, . . . , hn),
(f) if f ∈ Cn+1, Taylor’s formula

f (x + h) = f (x) + d f (x; h) + ⋅ ⋅ ⋅ + 1
n!
dn f (x; h, . . . , h)

+ 1
n! ∫

1

0
(1 − t)ndn+1 f (x + th; h, . . . , h)

holds for x + [0, 1]h ⊂ U .
Moreover, given locally convex X ,Y , Z, open subsets U ⊂ X, V ⊂ Y and Cn maps

f ∶ U → V , g ∶ V → Z, the chain rule holds for the composition g ○ f , i.e., also the
composition g ○ f is Cn [116, 163].

In ordinary calculus one can show that a continuously di�erentiable function function
is locally Lipschitz. An analogous result holds for the directional derivative on normed
spaces (see also [3]):

Proposition 3.2. Let f ∶ X → Y be a continuously di�erentiable map between the two
normed spaces (X , ∥ ⋅ ∥X) and (Y , ∥ ⋅ ∥Y). ¿en f is locally Lipschitz, i.e., for every convex
neighbourhood U of x0 ∈ X there exists a K ≥ 0 such that for all x1, x2 ∈ U

∥ f (x1) − f (x2)∥W ≤ K ∥x1 − x2∥V .
Proof. Since the derivative d f (x; h) is continuous and linear in h ∈ X, there exists a
convex neighbourhood U of x0 such that

∥d f (x; h)∥Y ≤ ∥d f (x)∥op∥h∥X ≤ K ∥h∥X
for all x ∈ U . As Lipschitz constant K we can choose the supremum of x ↦ ∥d f (x)∥op
in U . By the fundamental theorem of calculus we have for x1, x2 ∈ U

f (x1) − f (x2) = ∫ 1

0
d f (x2 + t (x1 − x2); x1 − x2)dt.

Hence, taking the norm on both sides, the previous equation yields

∥ f (x1) − f (x2)∥Y ≤ ∫ 1

0
∥d f (x2 + t (x1 − x2); x1 − x2)∥Y dt ≤ K ∥x1 − x2∥X . ◻

Later on we will o en encounter spaces of di�erentiable and smooth functions and
thus need an appropriate topology on these space: Let X ,Y be a topological vector space
such that Y is locally convex and U ⊂ X open. We can equip the vector space Cn(U ,Y)
of all n-times continuously di�erentiable maps between X and Y with the seminorms

∥ f ∥i ,k,K = sup
x∈K ∥dk f (x)∥i ,op
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for all f ∈ Cn(U ,Y), every compact K ⊂ U and 0 ≤ k ≤ n. ¿ese seminorms induce
an initial topology on Cn(U ,Y) turning it into a locally convex space. ¿is is another
example of a compact-open topology or topology of uniform convergence on compacta.
Note that, if Y is a Fréchet space and U is σ-compact, Cn(U ,Y) becomes a Fréchet space.
3.3.2 The Fréchet derivative

On Banach spaces it is possible to de�ne another directional derivative, the Fréchet deriva-
tive. Given Banach spaces X ,Y and an open subset U ⊂ X, a map f ∶ U → Y is called
Fréchet di�erentiable at x ∈ U if there exists a bounded linear operator D f (x) ∶ X → Y ,
the Fréchet derivative of f at x, such that

lim∥h∥X→0∥h∥−1X ( f (x + h) − f (x) −D f (x)h) = 0. (3.2)

¿e operator D f (x) is unique if it exists. In analogy to the directional derivatives that
we encountered so far, we also write Dh f (x) ≐ D f (x; h) ≐ D f (x)h. We call f Fréchet
di�erentiable if the Fréchet derivative exists for all x ∈ U . If the Fréchet derivative is
continuous in x, then f is continuously Fréchet di�erentiable.

¿e Fréchet derivative is closely related to the directional derivative de�ned above (see
also [3]):

Proposition 3.3. Let X ,Y be Banach spaces,U ⊂ X open and f ∶ U → Y amap. f is Fréchet
di�erentiable if and only if f is continuously di�erentiable. In that case the two derivatives
agree.

Proof. “⇒”: We can bring (3.2) into agreement with (3.1) by replacing h in (3.2) by th,
t ∈ R, and take the limit ∥th∥V → 0 along the ray of h, i.e., by taking t to zero while keeping
h �xed. Moreover, D f (x) is clearly continuous because it is linear and bounded.

“⇐”: As in proposition 3.2, since the derivative d f (⋅) is a continuous linear map, there
exists a (convex) neighbourhood V of x where it is bounded. Using the fundamental
theorem of calculus again, we obtain for any y ∈ V and su�ciently small h ∈ X

∥ f (x + h) − f (x) − d f (y; h)∥Y ≤ sup
t∈[0,1]∥d f (x + th) − d f (y)∥op∥h∥X .

In particular this holds for x = y and thus f is Fréchet di�erentiable at x with D f (x) =
d f (x). ◻

It follows that any statement on continuously di�erentiable maps also holds for Fréchet
di�erentiable maps.

Fréchet di�erentiability is a very strong notion of di�erentiability and many theorems
from ordinary calculus can be generalized to the Fréchet derivative but not further to
the directional derivative on arbitrary Fréchet spaces. An example is the inverse function
theorem for which holds for the Fréchet derivative on Banach spaces but does not hold
on general Fréchet spaces. On some Fréchet spaces one has instead the Nash–Moser
theorem [116].
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3.4 Fixed-point theorems

Let us start this section by stating the most elementary �xed-point theorem, the Banach
�xed-point theorem:

Theorem 3.4 (Banach �xed-point theorem). Let f ∶ X → X be a contraction on a (non-
empty) complete metric space X. ¿en f has a unique �xed-point x = f (x). Furthermore,
taking an arbitrary initial value x0 ∈ X, x is the limit of the sequence (xn) de�ned by the
iterative procedure xn+1 = f (xn).

We will not prove this theorem here; the proof is not di�cult and can be found
in essentially any introductory book on (functional) analysis. Instead we will dissect,
specialize, generalize and �nally prove various parts of this theorem separately.

3.4.1 Existence and uniqueness

Let us start with a useful lemma:

Lemma 3.5. Let ⋅ ⋅ ⋅ ⊂ Vk ⊂ Vk−1 ⊂ ⋅ ⋅ ⋅ ⊂ V0 be a decreasing sequence of sets. Suppose there
exists a functional f such that f ∶ Vk → Vk+1 for every non-negative k < n. Any �xed-point
x = f (x) in V0 is already in Vn.
Proof. Suppose that x ∈ V0 but x ∉ Vn is a �xed-point. ¿en there exists a k < n such that
x ∈ Vk and x ∉ Vk+1. Since x is a �xed-point of f , we have that x = f (x), but f (x) ∈ Vk+1
by the properties of f . ◻

¿is lemma has serval useful consequences. One example is the following: ¿e limit
of a convergent sequence in a complete metric space is not necessarily as regular as all
the elements of the sequence; a priori the regularity of the limit is only controlled by the
topology induced by the metric. However, if the limit is the �xed-point of a smoothing
map, the situation is much better.

Corollary 3.6. Let X ,Y be a topological vector spaces and U ⊂ X open. Further, let Vk ⊂
Ck(U ,Y) for all k such that Vk ⊂ Vk−1. Suppose there exists a smoothing functional f such
that f ∶ Vk → Vk+1 for every non-negative k < n. Any �xed-point x = f (x) in C0 is already
in Cn. ◻

If one is interested only in existence of �xed-points but not their uniqueness, then one
can perform a straightforward generalization of the ‘existence’ part of Banach’s �xed-point
theorem:

Proposition 3.7. Let (X , d) be a non-empty complete metric space and f ∶ X → X a map.
Assume that there exists a subset U ⊂ X such that f ∶ U → U and f is a contraction on U
with Lipschitz constant K ∈ [0, 1), i.e., for all y, z ∈ U

d( f (y), f (z)) ≤ Kd(y, z).
¿en there exists a �xed-point x = F(x) in X.
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Proof. De�ne for an arbitrary x0 ∈ U the Picard sequence (xn)where xn+1 = f (xn). Using
the contractivity of f on U , we get

d(xn+1, xn) ≤ Kd(xn , xn−1) ≤ Knd(x1, x0).
One can then easily show that (xn) is a Cauchy sequence and take the limit n → ∞ in
xn+1 = f (xn) to see that there exists a limit x = f (x) in X. ◻

¿is proposition does not guarantee uniqueness of the �xed-point because themapping
is only required to be a contraction on a subset of a complete metric space and the �xed-
point is not necessarily contained in this subset. Nevertheless, uniqueness holds if the
mapping is of the form assumed in Lem. 3.5. Moreover, if the mapping is smoothing as in
Cor. 3.6 then the unique �xed-point is even Cn.

Proposition 3.8. Let (X , d) be a non-empty complete metric space and (Vk) be a decreasing
sequence of sets as in Lem. 3.5 such that V0 ⊂ X is closed. Suppose that f ∶ Vk → Vk+1 for
every non-negative k < n such that f is a contraction on Vn. ¿en f has a unique �xed-
point x = f (x) ∈ Vn.
Proof. ¿e existence of �xed-points in V0 that are contained in Vn follows from Lem. 3.5
and Prop. 3.7. Assume now that there exist two distinct �xed-points x , y. Since f is a
contraction on Vn, we have

d(x , y) = d( f (x), f (y)) ≤ Kd(x , y),
where K ∈ [0, 1) is the Lipschitz constant of f , and thus arrive at a contradiction. ◻
3.4.2 A Lipschitz continuity criterion

Next we will see that it is not necessary for a map to be a contraction for it to have �xed
points. In fact it is su�cient for the map to satisfy a certain Lipschitz continuity condition:

Lemma 3.9. Let (X , d) be a non-empty complete metric space. Suppose there exists K ∈ R+
such that f ∶ X → X satis�es

d( f n(x), f n(y)) ≤ Kn

n!
d(x , y)

for all x , y ∈ X and n ∈ N. ¿en f has a unique �xed-point.

Proof. Since n! grows faster than Kn, there exists a N such that f n is a contraction for all
n ≥ N . If we set Vk = f k(X), we can apply Prop. 3.8 and the thesis follows. ◻

¿e special bound assumed in Lem. 3.9 is in fact very natural if f is the intgral func-
tional

f ∶ C[a, b]→ C[a, b], f (x)(t) ≐ f0(t) +∫ t

a
k(x)(s)ds, (3.3)

where f0 ∈ C[a, b] and with integral kernel k ∶ C[a, b] → C[a, b]. Recall that space of
continuous functions C[a, b] in the interval [a, b] can be turned into a Banach space by
equipping it with with the uniform norm

∥X∥C[a,b] ≐ ∥X∥∞ ≐ sup
t∈[a,b]∣X(t)∣,

where we will use ∥X∥C[a,b] instead of the more common ∥X∥∞ to emphasize the interval
over which the supremum is taken.
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Proposition 3.10. Let f be of the form (3.3)with k continuously di�erentiable inU ⊂ C[a, b]
open such that f closes on a closed subset V ⊂ U , i.e., f (V) ⊂ V . ¿en f has a unique
�xed-point in V .

Proof. We can show the statement using Lem. 3.9 and an inductive procedure. Ap-
plying Prop. 3.2, we �nd that k is locally Lipschitz as a functional on U ; denote by
L = supx∈U∥dk∥op its Lipschitz constant. Using the uniform norm on C[a, t], we thus
obtain

∥ f (x) − f (y)∥C[a,t] ≤ ∫ t

a
∥k(x) − k(y)∥C[a,t] ds ≤ L(t − a)∥x − y∥C[a,b].

Suppose now that

∥ f n(x) − f n(y)∥C[a,t] ≤ Ln(t − a)n
n!

∥x − y∥C[a,b]. (3.4)

holds up to n and for arbitrary t ∈ [a, b]. ¿en,

∣ f n+1(x)(t) − f n+1(y)(t)∣ ≤ ∫ t

a
∥(k ○ f n)(x) − (k ○ f n)(y)∥C[a,s] ds

≤ L∫ t

a
∥ f n(x) − f n(y)∥C[a,s] ds

≤ Ln+1
n! ∫

t

a
(s − a)n∥x − y∥C[a,b] ds

≤ Ln+1(t − a)n+1(n + 1)! ∥x − y∥C[a,b],
which implies that (3.4) holds also for n + 1, thus concluding the proof. ◻
3.4.3 Closed functionals

¿e last proposition contains an apparently minor but in fact very strong condition, namely
that the functional k closes within the set V . In any application of a �xed-point theorem
similar to Banach’s theorem, the crucial point to check is usually not that the map is a
contraction but that it is closed. In the given case of an integral functional (3.3), however,
we can always be assured that there exists an interval I ⊂ [a, b] on which the functional
closes [3]; this interval might be very small.

Proposition 3.11. Suppose that k is bounded on a set U ⊂ C[a, b] which also includes a
ball V around f0 de�ned as V = {x ∣ ∥x − f0∥C[a,b] < δ} for some δ. ¿en there exists
t ∈ (a, b] such that f satis�es f (U)↾[a,t] ⊂ U↾[a,t].
Proof. Since k is bounded on U , it clearly satis�es

∥k(x)∥C[a,t] ≤ ∥k(x)∥C[a,b] ≤ K = sup
y∈U ∥k(y)∥C[a,b]

for all x ∈ U . ¿en, taking the norm of (3.3) a er subtracting f0, one obtains

∥ f (x) − f0∥C[a,t] ≤ (t − a)∥k(x)∥C[a,t] ≤ (t − a)K ,
because V ⊂ U . For any δ we can always �nd a t such that (t − a)K < δ and therefore
f (U)↾[a,t] ⊂ V↾[a,t]. ¿e thesis follows because V ⊂ U . ◻
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3.5 Microlocal analysis

3.5.1 Distributions

We will now de�ne three important function spaces and their topological duals, which
will be called spaces of distributions.

To conform with standard notation we denote the space of smooth functions on an
open subset U ⊂ Rn by

E(U) ≐ C∞(U ,C).
As observed in Sect. 3.3.1, it is a Fréchet space with the compact-open topology. ¿e
elements of the topological dual E′(U) are called compactly supported distributions.

¿e vector space of rapidly decreasing (or decaying) functions will be denoted byS(U).
We say that a smooth function f ∈ E(Un) is rapidly decreasing (decaying) if

∥ f ∥i ,n,m ≐ sup
x∈Un

(1 + ∣x∣n)∥dm f (x)∥′i <∞
for all i , n,m. We equipS(U) with the topology induced by these seminorms and see that
it is a Fréchet space. ¿e topological dual S′(U) is the space of tempered distributions or
Schwartz distributions.

Another subspace of E(U) is the space of test functions, denoted by
D(U) ≐ C∞0 (U ,C).

We can equip this space with a topology similar but more complicated than that of E(U).
If K ⊂ U is compact, we can endow D(K) = E(K) with the subspace topology. ¿en,
taking a compact exhaustion K1 ⊂ K2 ⊂ ⋅ ⋅ ⋅,⋃i Ki = U , the topology on D(U) is the initial
topology de�ned by the projections πi ∶ D(Ki) → D(U). ¿is topology is not Fréchet
unless U is compact and E(U) is already Fréchet, in which case D(U) = E(U). ¿e
topological dual D′(U) is the space of distributions.

More generally, we de�ne F(U , X), with F= D, Eor S, as the spaces of functions
with values in a locally convex vector space X and byF′(U , X) the associated distribution
spaces. ¿e necessary generalizations to the de�nitions above are straightforward but note
that the resulting function spaces are not Fréchet unless V is already Fréchet. Moreover,
it is possible to de�ne Y-valued distributions F′(U , X ,Y), where Y is a locally convex
space.

Given a distribution u ∈ D′(U), we can restrict it to a distribution uV on any open
V ⊂ U by setting

uV( f ) = u( f ) (3.5)

for every f ∈ D(V). A distribution is uniquely determined by its restrictions: If (Ui)i∈N is
an open cover of U and ui ∈ D′(Ui) such that ui = u j whenever Ui ∩U j ≠ ∅, then there
exists a unique u ∈ D′(U) such that ui is the restriction of u to Ui for every i.

¿e support suppu of a distribution u ∈ D′(U) is the smallest closed set V ⊂ U such
that the restriction of u to U ∖ V vanishes. More precisely,

suppu = U ∖⋃{V ⊂ U open ∣ u( f ) = 0 ∀ f ∈ D(V)}.
It follows that u( f ) = 0 if suppu ∩ supp f = ∅ and that the space E′(U) is indeed the
space of compactly supported distributions.
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3.5.2 Distributions on manifolds

¿ediscussion above does not yet encompass the case of distributions on smoothmanifolds
because manifolds are not vector spaces. However, manifolds are locally homeomorphic
to a vector space – Euclidean space.

Let M be a smooth manifold, E → M a smooth vector bundle and (Ui)i∈N an open
cover ofM such that (Ui , φi) are coordinate charts and (Ui ,ψi) local trivializations. We
de�ne again the space of smooth sections

E(M , E) ≐ Γ∞(E)
as the space of functions f ∶ M → E such that ψi ○ f ○ φ−1i is smooth for each i, i.e., we
require

ψi ○ f ○ φ−1i ∈ E(φi(Ui),ψi(EU i)).
A locally convex topology that turns E(M , E) into a Fréchet spaces is the initial topology
induced by the product topology on the right-hand side of the injection

ι ∶ E(M , E)→∏
i∈N E(φi(Ui),ψi(EU i));

the topology is independent of the choice of the cover (Ui)i∈N. ¿e topological dual of
E(M , E) is the space of compactly supported distributional sections E′(M , E).

¿e space of compactly supported smooth sections, the test sections, is denoted

D(M , E) ≐ Γ∞0 (E).
Analogously to the vector space case we de�ne an initial topology on D(M , E) induced
by that on E(Ki , E), where (Ki) form a compact exhaustion ofM; whence the space of
test sections becomes a Fréchet space. ¿e space of distributional sections D′(M , E) is the
topological dual of D(M , E).

¿e restriction of distribution generalizes to distributions on manifolds in the obvious
way: Given a manifold M and an open subset U ⊂ M, every distribution u ∈ D′(M , E)
can be restricted to a distribution uU ∈ D′(U , EU) by setting

uU( f ) = u( f )
for all f ∈ D(U , EU). Also on a manifold a distribution is completely supported by its
restrictions.

It does not make sense to de�ne a notion of rapidly decaying sections or tempered
distributional sections on manifolds. It is also clear, that the concept of distributions can
be further extended to objects such as Fréchet manifolds in very much the same way as
above for smooth manifolds.

3.5.3 Nuclearity and the Schwartz kernel theorem

All the function spaces but none of the distribution spaces de�ned in the previous two
sections are Fréchet. However, all the function and distribution spaces (with either the
weak or strong topology) are nuclear. For this reason, we have the isomorphisms

D(U , X) ≃ D(U) ⊗̂ X , D′(U ,K, X) ≃ D′(U) ⊗̂ X ,
E(U , X) ≃ E(U) ⊗̂ X , E′(U ,K, X) ≃ E′(U) ⊗̂ X ,

S(Rm , X) ≃ E(Rm) ⊗̂ X , S′(Rm ,K, X) ≃ S′(Rm) ⊗̂ X
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for a complete locally convex topological vector space X and an open set U ⊂ Rm. As
another consequence we can specialize the abstract kernel theorem (cf. Sect. 3.1.5) to these
function spaces under which circumstances it is called the Schwartz kernel theorem. One
�nds the following isomorphism (open subsets U ⊂ Rm and V ⊂ Rn):

E′(U × V) ≃ E′(U) ⊗̂ E′(V) ≃ L(E(U), E′(V)),
D′(U × V) ≃ D′(U) ⊗̂ D′(V) ≃ L(D(U), D′(V)),
S′(Rm+n) ≃ S′(Rm) ⊗̂S′(Rn) ≃ L(E(Rm), E′(Rn)),

where L(X ,Y) denotes the space of continuous linear maps between topological vector
spaces X and Y with the topology of uniform convergence. Analogous isomorphisms (at
least for Eand D) exist for both sets of isomorphisms also for functions and distributions
on manifolds.

As a consequence of these isomorphisms, there exists for every distribution K ∈
D′(U × V) a unique linear operator K ∶ D(U)→ D′(V) and, conversely, to every linear
operator K a unique distribution. Let f ∈ D(U) and g ∈ D(V) be test functions. Formally
we can write

K( f ⊗ g) = ∫
U×V K(x , y) f (x)g(x)dmx dn y

for the distribution with distributional kernel K(x , y) and
(K f )(y) = ∫

U
K(x , y) f (x)dmx , (tKg)(x) = ∫

V
K(x , y)g(y)dn y,

for the associated operator and its transpose.
¿e operator K is called semiregular if it continuously5 maps D(U) into E(V) and,

analogously, the transpose tK is called semiregular if it continuously maps D(V) into
E(U). In the case that tK is semiregular, we can uniquely extend K to an operator acting
on compactly supported distributions E′(U) by duality:

(Ku)(g) = (tKg)(u)
for all u ∈ E(U) and g ∈ D′(V).

If both K and tK are semiregular, we say that K regular. Moreover, it is called properly
supported if the projections from suppK ⊂ U × V onto each factor are proper maps. A
properly supported operator K maps D(U) to E′(V) and can therefore be extended to an
operator D(U)→ E′(V). Since linear di�erential operators are properly supported and
regular, they can be uniquely extended to distributions and they can also be composed.

3.5.4 Fourier transformation and convolution

Let us denote by Lp(Rn) the Lp spaces of functions onRn with values inC. ¿at is, Lp(Rn)
is the space of functions for which the Lebesgue integrals

∥ f ∥p ≐ (∫
Rn

∣ f (x)∣p dnx)1/p
5Continuity is meant with respect to the usual topology of E(V) and not the subspace topology of

D′(V).
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exist and where we identify functions which are equal almost everywhere so that the Lp
spaces become Banach spaces. L1 functions are called Lebesgue integrable, while L2 are
called square-integrable.

On the space of Lebesgue integrable functions L1(Rn), the Fourier transform is de�ned
as the automorphism

F ∶ f (x)↦ F( f )(ξ) ≐ (2π)−n∫
Rn

f (x)e−ix⋅ξ dnx ,
where ⋅ denotes the Euclidean dot product. ¿e Fourier transform satis�es

F2( f )(x) = (2π)n f (−x)
and the inverse Fourier transform is therefore given by

F−1( f )(x) ≐ ∫
Rn

f (ξ)eix⋅ξ dnξ.
When no confusion can arise, we usually denote the Fourier transform of a function f
by f̂ instead ofF( f ).

By the Riemann–Lebesgue lemma, it is clear that f̂ (ξ) → 0 as ∣ξ∣ → ∞. In fact,
the Fourier transform is a linear isomorphism from the subspace of rapidly decaying
functions S(Rn) into itself. Since the space of rapidly decreasing functions is stable under
di�erentiation and multiplication by polynomials, one �nds for f ∈ S(Rn)

F(∂µ f )(ξ) = ξµ f̂ (ξ) and F(xµ f )(ξ) = ∂µ f̂ (ξ). (3.6)

Moreover, given also g ∈ S(Rn), the Plancherel–Parseval identities are
∫
Rn

f (x)g(x)dnx = (2π)−n∫
Rn

f̂ (ξ)ĝ(ξ)dnξ, (3.7)

∫
Rn

∣ f (x)∣2 dnx = (2π)−n∫
Rn

∣ f̂ (ξ)∣2 dnξ.
As a consequence, the Fourier transform can be extended to an isomorphism of L2(Rn)
into itself.

¿e Plancherel–Parseval formula (3.7) guides us to extend the Fourier transformation
Ffurther to the space of tempered distributions S′(Rn) by

⟨û, f ⟩ ≐ ⟨u, f̂ ⟩
for all u ∈ S′(Rn) and f ∈ S(Rn), i.e., it is the transpose of the Fourier transformation on
rapidly decreasing functions. It follows thatFis a linear isomorphism from S′(Rn) (with
the weak topology) into itself and analogues of the relations (3.6) hold also for tempered
distributions u ∈ S′(Rn):

F(∂µu)(ξ) = ξµû(ξ) and F(xµu)(ξ) = −∂µû(ξ).
If we restrict to the space of compactly supported distributions, the Fourier transform

of u ∈ E′(Rn) is equivalently given as the smooth function
û(ξ) = ⟨u, f ∶ x ↦ e−ix⋅ξ⟩.

¿e Fourier transform û can be directly extended to Cn as an entire analytic function.
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¿e convolution of two Lebesgue integrable functions f , g ∈ L1(Rn) is de�ned as
( f ∗ g)(x) ≐ ∫

Rn
f (y)g(x − y)dn y.

¿eproduct thus de�ned is dual to the usual productwith respect to Fourier transformation.
To wit, the identities

F( f ∗ g) = f̂ ĝ and F( f g) = (2π)−n( f̂ ∗ ĝ)
hold and are the result of the convolution theorem. Note that for distributions u ∈ S′(Rn)
and v ∈ E′(Rn), the convolution u ∗ v is a well-de�ned tempered distribution and its
Fourier transform satis�esF(u∗v) = û v̂ as in the convolution theorem. If also the product
uv is well-de�ned as a (tempered) distribution, cf. Sect. 3.5.7), then other statement of the
convolution theorem holds andF(uv) = (2π)−n(û ∗ v̂)
3.5.5 Singularities and the wavefront set

Every locally Lebesgue integrable function u ∈ L1loc(Rn) can be identi�ed with a distribu-
tion in D′(Rn), denoted by the same symbol, via

u( f ) = ⟨u, f ⟩ = ∫
Rn
u(x) f (x)dnx

for all f ∈ D(Rn). We say that a distribution u ∈ D′(Rn) is smooth, if it is induced
from a smooth function via this duality pairing. More speci�cally, every smooth function
corresponds to a distribution in this way and in fact D(Rn) is isomorphic to a dense
subset of D′(Rn). ¿erefore this pairing uniquely extends to a pairing between D(Rn)
and D′(Rn). Using the Plancherel–Parseval identity (3.7), it can be written explicitly as

u( f ) = (2π)−n∫
Rn
χ̂u(ξ) f̂ (−ξ)dnξ, (3.8)

where u ∈ D′(Rn) and χ ∈ D(R) such that χ = 1 on a compact neighbourhood of the
support of f ∈ D(Rn). ¿is pairing may be considered the motivation of the wavefront
set to be de�ned below.

¿e singular support singsuppu of a distribution u ∈ D′(Rn) is then de�ned as the
complement of the union of all open sets on which u is smooth in the sense of the pairing
above. In other words, it is the smallest closed subsetU ⊂ Rn such that uRn∖U ∈ E(Rn∖U).

¿e Fourier transform, introduced in the previous section, can be used to give a
condition on the smoothness of a compactly supported distribution u ∈ E′(Rn). Namely,
u is smooth if and only if for each n ∈ N0 there exists a constant Cn such that

∣û(ξ)∣ ≤ Cn(1 + ∣ξ∣)−n
for all ξ ∈ Rn.

Checking this condition for certain ξ, a regular direction of a compactly supported
distribution u ∈ E′(Rn) is a vector ξ ∈ Rn ∖ {0} such that there exists an open conical6
neighbourhood Γ of ξ and such that

sup
ζ∈Γ (1 + ∣ζ ∣)n∣û(ζ)∣ <∞

6A cone in Rn is a subset Γ ⊂ Rn such that λΓ = Γ for all λ > 0.
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for all n ∈ N0. Conversely, a ξ is called a singular direction of u if it is not a regular direction.
¿e (closed) set of all singular directions of u is

Σ(u) ≐ {ξ ∈ Rn ∖ {0} ∣ ξ is not a regular direction of u},
i.e., the complement of all regular directions.

We can localize the notion of singular directions and say that ξ is a singular direction
of u ∈ D′(U) at x ∈ U , where U ⊂ Rn is open, if there exists a n ∈ N0 such that

sup
ζ∈Γ (1 + ∣ζ ∣)n∣F(χu)(ζ)∣

is not bounded for all χ ∈ D(U) localized at x (i.e., χ(x) ≠ 0). ¿at is, the set of singular
directions at x is the closed set

Σx(u) ≐⋂
χ
Σ(χu),

where the intersection is over all χ ∈ D(U) such that χ(x) ≠ 0.
¿is leads to the de�nition of the wavefront set as the set of the singular directions at

all points:
WF(u) ≐ {(x; ξ) ∈ U × (Rn ∖ {0}) ∣ ξ ∈ Σx(u)}.

¿us the wavefront set is a re�nement of the notion of singular support. Moreover, it
can be used as a practical tool for calculating the singular support because singsuppu is
the projection of WF(u) onto the �rst component. ¿e wavefront set has the following
properties:

(a) WF(χu) ⊂WF(u),
(b) WF(u + v) ⊂WF(u) ∪WF(v),
(c) WF(Pu) ⊂WF(u)

for all distributions u, v ∈ D′(U), localizing functions χ ∈ D(U) and linear di�erential
operators P (with smooth coe�cients).

3.5.6 Wavefront set in cones

Let U ⊂ Rn be open and Γ ⊂ U × (Rn ∖ {0}) a closed cone, where we have extended the
de�nition of a cone to sets for which the projection to the second component at each point
is a cone. We de�ne distributions with wavefront set contained in the cone Γ as

D′
Γ(U) ≐ {u ∈ D′(U) ∣WF(u) ⊂ Γ},

which is not empty for any cone Γ. ¿e normal topology7 turns D′
Γ(U) into a complete

nuclear space [54]. It is induced by the seminorms

∥u∥B = sup
f ∈B ∣u( f )∣ and ∥u∥n,V ,χ = sup

ξ∈V (1 + ∣ξ∣)n∣F(χu)(ξ)∣,
7¿enormal topology [54] is �ner than the o en emplyedHörmander topology for these spaces. Nuclearity

also holds for the Hörmander topology but not completeness.
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for all bounded sets B ⊂ D(U), n ∈ N0, localizing functions χ ∈ D(U) and closed cones
V ⊂ Rn ∖ {0} such that supp(χ) × V ⊂ Γ.

Given a closed cone Γ as above, de�ne the open cone

Λ = (Γ′)c ≐ {(x; ξ) ∈ U × (Rn ∖ {0}) ∣ (x;−ξ) ∉ Γ}
as the complement of the re�ection of Γ and

E′Λ(Rn) ≐ {v ∈ E′(Rn) ∣WF(v) ⊂ Λ}
as the space of compactly supported distributions with wavefront set contained in Λ. ¿en
one can �nd an analogue to the pairing (3.8) for all u ∈ D′

Γ(Rn) and v ∈ E′Λ(Rn) given
by [54]

⟨u, v⟩ ≐ (2π)−n ∫
Rn
χ̂u(ξ)v̂(−ξ)dnξ,

for any χ ∈ D(R) such that χ = 1 on a compact neighbourhood of supp v. E′Λ(Rn) thus
becomes the topological dual of D′

Γ(Rn) (with the normal topology) and (equipped with
the strong topology) it is also nuclear but not complete unless Λ is also closed [54].

3.5.7 Pullback of distributions

Let U ,V be open subsets of Rn and ι ∶ U → V a di�eomorphism. ¿e pullback ι∗u of a
distribution u ∈ D′(V) is (uniquely) de�ned for every f ∈ D(U) as the transpose of the
pushforward (up to the Jacobian determinant)

⟨ι∗u, f ⟩ = ⟨u, ι∗ f ∣det dι∣⟩
or, equivalently, as the continuous extension of the pullback on smooth function. Conse-
quently, for any closed cone Γ ⊂ V × (Rn ∖ {0}), one obtains

ι∗D′
Γ(V) = D′

ι∗Γ(U), ι∗Γ ≐ {(x;T∗x ι(ξ)) ∣ (ι(x); ξ) ∈ Γ} (3.9)

and hence WF(ι∗u) = ι∗WF(u).
Trying to generalize this result to cases where ι ∶ U → V is not a di�eomorphism but

an embedding of an open subset ofRn into an open subset ofRm can fail if there are (x; ξ)
such that T∗x ι(ξ) = 0. It follows that a distribution u ∈ D′(V) can only be pulled back to
a distribution ι∗u if WF(u) ∩ N = ∅, where

N = {(ι(x); ξ) ∈ V ×Rm ∣ x ∈ U , T∗x ι(ξ) = 0}
is the set of conormals of ι.

Given two distributions u ∈ D′(U) and v ∈ D′(V), where U ⊂ Rn and V ⊂ Rm are
open, the tensor product

u ⊗ v ∶ f ⊗ h ↦ u( f )v(h)
is a distribution in D′(U × V) ≃ D′(U) ⊗̂ D′(V) via Schwartz’s kernel theorem. One
can show that its wavefront set satis�es

WF(u ⊗ v) ⊂ (WF(u) ×WF(v)) ∪ ((suppu × {0}) ×WF(v))
∪ (WF(u) × (supp v × {0})).
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It is possible to pullback the tensor product u ⊗ v of two distributions over the same
space (i.e., U = V ) with the diagonal map

∆ ∶ U ×U → U , (x , x)↦ x

if WF(u⊗v)∩N∆ = ∅, where N∆ is the set of conormals with respect to the map ∆, which
gives the (unique) product uv of the two distributions. ¿is requirement of the wavefront
set implies that it is possible to multiply two distributions if and only if

(x , ξ) ∈WF(u) Ô⇒ (x ,−ξ) ∉WF(v) (3.10)

and then wavefront set of the product is bounded by

WF(uv) ⊂ {(x; ξ + ζ) ∣ (x; ξ) ∈WF(u), (x; ζ) ∈WF(v)}
∪WF(u) ∪WF(v). (3.11)

Note that for u, v that do not satisfy (3.10), the singular directions would add up to zero in
the �rst term on the right-hand side of (3.11).

3.5.8 Wavefront set of distributional sections

¿e wavefront set can be extended to distributions on vector-valued functions component-
wise, i.e., using D′(U ,Km) ≃ D′(U) ⊗ Km ≃ D′(U)⊕m. Namely, one de�nes for u ∈
D′(U ,Km)

WF(u) ≐ m⋃
i=1WF(ui),

where ui ∈ D′(U) are the components of u. ¿is de�nition is invariant under a change of
basis because such a change only implies a multiplication of (ui) by a matrix with smooth
components.

Moreover, the wavefront set being a local concept, it generalizes to manifolds and
distributional sections in a coordinate neighbourhood via local trivializations. However,
to be meaningful, it needs to transform covariantly under di�eomorphisms.

Let (Ui)i∈N be an open cover of a smooth n-manifoldM such that (Ui , φi) are coor-
dinate charts and (Ui ,ψi) are local trivializations of the vector bundle E → M. Given a
distribution u ∈ D′(M , E) with restrictions ui to Ui , the wavefront set for every ui given
by

WF(ui) ≐ {(x;T∗x φ(ξ)) ∈ Ui × (Rn ∖ {0}) ∣ (φ(x); ξ) ∈WF(ψi ○ ui ○ φ−1i )}.
and transforms as a conical subset of the cotangent bundles T∗Ui as seen by (3.9). In
particular, WF(ui) ∩ T∗(Ui ∩U j) =WF(u j) ∩ T∗(Ui ∩U j) for all i , j.

¿e wavefront set of distributional sections u is then de�ned as the union of all WF(ui).
In other words, it is the set of points

(x; ξ) ∈ Ṫ∗M ≐ T∗M ∖ {(y; 0) ∈ T∗M},
the cotangent bundle with the zero section removed, such that (x; ξ) ∈WF(uU), where U
is a coordinate and trivialization neighbourhood of E.
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3.5.9 Some distributions and their wavefront set

For any f ∈ E(R), Dirac’s δ-distribution is
δ( f ) = f (0)

and it follows that δ has support only at the origin. ¿ere it does not decay in any direction
because δ̂ = 1 so thatWF(δ) = {0}×(R∖{0}). Consequently powers of the δ-distribution
cannot be de�ned.

¿e Dirac δ-distribution can be decomposed into two distributions

δ±( f ) ≐ lim
ε→0+∫R

f (x)
x ± iε dx ,

for all f ∈ S(R), such that −2πiδ = δ+ + δ−, where WF(δ±) = {0} ×R±. Now, powers of
either δ± are well-de�ned but the distribution δ+δ− does not exist.

¿e wavefront set of δ+ (and analogously that of δ−) can be calculated as follows: Using
the residue theorem, the Fourier transform of 1/(x + iε) for ε > 0 is8

∫
R

e−ixξ
x + iε dx = −2πiθ(ξ) e−ξε .

Taking the limit ε → 0+, this gives δ̂+(ξ) = −2πiθ(ξ). ¿en, applying the convolution
theorem, one obtains the Fourier transform of χδ+ for all χ ∈ D(R) as

F(χδ+) = 1
2π

( χ̂ ∗ δ̂+) = −i∫ ξ

−∞ f̂ (k)dk.
Since this decays rapidly as ξ → −∞ and does not decay as ξ →∞, we get the expected
wavefront set.

Related to the diagonal map ∆ ∶ (x , x)↦ x, we can de�ne for all f ∈ D(R2) a diagonal
distribution

∆( f ) ≐ ∫
R
f (x , x)dx .

It is clear that the wavefront set of ∆ is

WF(∆) = N∆ = {(x , x; ξ,−ξ) ∈ R4 ∖ {0}}.
Given instead two functions f1, f2 ∈ D(R), we can write

∆( f1 ⊗ f2) = ∫
R
( f1 ∗ δ)(x) f2(x)dx

Splitting the δ-distribution into its positive and negative frequency components as above,
we can therefore de�ne

∆±( f ) ≐ lim
ε→0+∫R

f (x , y)
y − x ± iε dx dy,

which in the case f = f1 ⊗ f2 can be written as

∆±( f1 ⊗ f2) = ∫
R
( f1 ∗ δ±)(x) f2(x)dx .

It is not a di�cult exercise to show that [5, Exmpl. 1.4]

WF(∆±) = {(x , x; ξ,−ξ) ∈ R4 ∖ {0} ∣ ± ξ > 0}.
Moreover, using the Plancherel–Parseval identities it is possible to show that ∆± is well-
de�ned for all f1, f2 ∈ L2(R).

8θ denotes the Heaviside step-function.
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3.5.10 Propagation of singularities

In Sect. 3.5.5 we already noticed thatWF(Pu) ⊂WF(u). ¿at is, knowing the wavefront set
of the distribution u, we can deduce information about the wavefront set of Pu, where P is
a di�erential operator. ¿e theorem on the propagation of singularities gives us information
in the opposite direction. Namely, WF(Pu) and the form of P, tell us a lot about WF(u).

Let P ∶ E(M , E)→ E(M , E) be a di�erential operator acting on sections of a vector
bundle E → M. Its characteristic set is the cone

char P = {(x; ξ) ∈ Ṫ∗M ∣ det σP(x , ξ) = 0}
on which the principal symbol σP of P cannot be inverted.9 An integral curve of σP in
char P is called a bicharacteristic strip, its projection ontoM a bicharacteristic.

Theorem 3.12 (Propagation of singularities). Suppose that P is a di�erential operator with
real homogeneous principal symbol such that no complete bicharacterstic stays in a compact
set of M (i.e., P is of real principal type) and let u, f ∈ D′(M , E) such that Pu = f . ¿en

WF(u) ⊂ char P ∪WF( f )
and, if (x; ξ) ∈ WF(u) ∖WF( f ), it follows that (x′; ξ′) ∈ WF(u) for all (x′; ξ′) on the
bicharacteristic strip passing through (x; ξ).

3.6 Wave equations

Both classical and quantum �elds usually satisfy an equation of motion given by a wave
equation

Pu = f , (3.12)

where P is a normally hyperbolic di�erential operator, u is the �eld and f and an external
source. On globally hyperbolic manifolds the wave equation can be solved, i.e., the Cauchy
problem for (3.12) is well-posed.

3.6.1 Retarded and advanced propagators

Let (M , g) be a spacetime and P ∶ E(M , E)→ E(M , E) a di�erential operator on sections
of a vector bundle E → M. A linear operator G∨ ∶ D(M , E)→ E(M , E) such that for all
f ∈ D(M , E)

PG∨ f = f and G∨P f = f ,

i.e., G∨ is a le - and right-inverse of P, and
supp(G∨ f ) ⊂ J+(supp f )

is called a retarded propagator or retarded Green’s operator for P. Similarly, a linear operator
G∧, which is a two-sided inverse of P and satis�es

supp(G∧ f ) ⊂ J−(supp f )
9If the principal symbol of P is invertible, we say that P is elliptic. Example of elliptic operators are the

Laplace operator and the Cauchy–Riemann operator.
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for all test sections f , is called a advanced propagator or advanced Green’s operator.10 We
say that P is Green-hyperbolic if it admits unique retarded and advanced propagators when
restricted to a globally hyperbolic region.

Given a linear di�erential operator Q such that P ○Q = Q ○ P, i.e., Q commutes with P,
then it also commutes with the propagators of P. ¿at is, one �nds

G∨Q f = QG∨ f and G∧Q f = QG∧ f
for all f ∈ E(M , E).

If P is Green-hyperbolic, then the transpose operator tP on sections of the dual bundle
E∗ is also Green-hyperbolic; we denote its propagators by Gt∨ and Gt∧. ¿ey are closely
related to the propagators of P and one �nds

G∨ = t(Gt∧) and G∧ = t(Gt∨).
Since the propagators are regular, they can be uniquely extended to operators E′(M , E)→ D′(M , E). Although the propagators are not properly supported, they can also be

de�ned for some non-compactly supported sections. ¿e geometry of (M , g) enables us
to de�ne further types of ‘compact’ support: We say that a (distributional) section u is
future or past compact if there exists a Cauchy surface Σ such that

suppu ⊂ J+(Σ) or suppu ⊂ J−(Σ),
respectively. Denote by the subscripts ‘fc’ and ‘pc’ the subsets of (distributional) sections
of future and past compact support. Via the transpose propagators Gt∨,Gt∧, we can then
uniquely extend the retarded propagator to D′

fc(M , E) → D′(M , E) and the advanced
propagator to D′

pc(M , E)→ D′(M , E).
Let E be endowed with a bundle metric (⋅ , ⋅). ¿e formal adjoint P∗ of P with respect

to (⋅ , ⋅) is given by
∫
M
(P f , h) µg = ∫

M
( f ,P∗h) µg

for all f , h ∈ E(M , E) such that supp f ∩ supp h is compact. If P∗ = P, the operator is
called formally self-adjoint. In that case, it follows from the last paragraph that

∫
M
(G∨ f , h) µg = ∫

M
( f ,G∧h) µg .

As indicated above, wave operators on globally hyperbolic manifolds play an important
role and, in fact, they are particularly well-behaved [24, 103]:

Theorem 3.13. Any normally hyperbolic operator P on a globally hyperbolic manifold admits
unique retarded G∨ and advanced propagators G∧.

It is not di�cult to extend this result to pre-normally hyperbolic operators on globally
hyperbolic spacetimes. Namely, given pre-normally hyperbolic operators P and Q such
that P ○Q is normally hyperbolic, P possesses unique retarded and advanced propagators

G̃∨ = Q ○G∨ and G̃∧ = Q ○G∧,
where G∨,G∧ are the propagators for the composite operator P ○Q.

10Note that our de�nition of the support of the retarded and advanced propagators is exactly opposite to
that in [23, 24] and also [72].
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3.6.2 Causal propagator

¿e causal propagator is de�ned as the di�erence of the retarded and advanced propagator

G ≐ G∨ −G∧.
From the support properties of the retarded and advanced propagator it is clear that
supp(G f ) = J(supp f ) for all f ∈ D(M , E). In Sect. 5.3.2 we will see that the causal
propagator, or rather the associated distribution via Schwartz’s kernel theorem, may also
be called the commutator distribution or Pauli–Jordan distribution.

By the regularity of the retarded and advanced propagators, it is clear that G extends
to an operator E′(M , E)→ D′(M , E). Noting the support property of G, this statement
can be strengthened to extend the causal propagator to D′

tc(M , E)→ D′(M , E). Here we
have denoted by a subscript ‘tc’ the space of (distributional) sections of timelike compact
support, i.e., the sections u such that

suppu ⊂ J+(Σ1) ∩ J−(Σ2)
for two Cauchy surfaces Σ1, Σ2.

Every smooth and spacelike compact solution of the homogeneous di�erential equa-
tion Pu = 0 propagating on a globally hyperbolic spacetime (M , g)with Green-hyperbolic
operator P can be obtained by applying G to a test section f . In fact, if we denote by
Esc(M , E) the smooth sections of E with spacelike compact support, then we �nd the
exact sequence

{0}Ð→ D(M , E) PÐ→ D(M , E) GÐ→ Esc(M , E) PÐ→ Esc(M , E).
¿is sequence also entails the fact that the kernel of G is given by PD(M , E). In other
words, f − f ′ = Ph for some f , f ′, h ∈ D(M , E) implies that G f = G f ′.

Closely related to the existence of a causal propagator is the question whether the
Cauchy problem is well-posed. ¿e Cauchy problem for the wave equation Pu = 0 on a
globally hyperbolic manifold (M , g) is the following:

Given a Cauchy surface ι ∶ Σ → M with normal vector �eld n, does there exist a unique
section u ∈ E(M , E) such that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pu = 0,
ι∗u = u0,
ι∗∇nu = u1

and the solution u depends continuously on the data u0, u1 ∈ E(Σ, ι∗E).
¿is question can be answered in the positive for normally hyperbolic operators P on

globally hyperbolic spacetimes. With the appropriate modi�cations, the Cauchy problem
can also be formulated for pre-normally hyperbolic operators. Also in that case Cauchy
problem is well-posed [220]. For general Green-hyperbolic operators the Cauchy problem
is more complicated and it is not obvious whether the Cauchy problem is well-posed.
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Enumerative combinatorics

Summary

In this chapter we discuss the results obtained by Fewster and the author in [95] on the
enumeration of the run structures of permutations. Some of the results stated here will can
be applied in the study of themoment problem in quantum �eld theory and the connection
will be discussed brie�y in Sect. 4.4.

¿e �rst section (Sect. 4.1) gives a summary of the elementary de�nitions for (linear)
permutations and circular permutations. ¿en, the subsections of the second section
(Sects. 4.2.1 to 4.2.3) deal, respectively, with the enumeration of the run structure of atomic,
circular and linear permutations. Using a suitable decomposition, this is accomplished
in each case by reducing the enumeration problem to that for atomic permutations. In
the third section (Sect. 4.3) we apply and extend the methods developed in the preceed-
ing sections to enumerate the valleys of permutations, thereby reproducing a result of
Kitaev [138]. Finally, in the last section (Sect. 4.4), we discuss the original motivation of
the work [95] and other possible applications.

4.1 Permutations

Let us adopt the following notation for integer intervals: [a . . b] ≐ [a, b] ∩N = {a, a +
1, . . . , b} with the special case [n] ≐ [1 . . n].
4.1.1 Linear permutations

Given a set S, a (linear) permutation of S is a bijection σ ∶ S → S. In the two-line notation
of the permutation of a �nite set is written as

σ = ( a b c ⋯
σ(a) σ(b) σ(c) ⋯ ) ,

where a, b, c, . . . ∈ S. It is clear that the order of elements in the �rst line is irrelevant as
long as the second line is ordered accordingly.

¿e set of all bijection on S forms the (linear) permutation groupSS of S; the group
operation is the composition ○ of functions. ¿ere are n! permutations inSS if S is a set
of n elements. In the special case that S = [n], one writesSn ≐S[n].

Given a (strict) total order on a �nite set S, i.e., a binary relation < that is transitive
and trichotomous, the �rst line will always be ordered in the natural order. Since every
�nite ordered set S is isomorphic to a subset [n] of the natural numbers with the standard
ordering, this identi�cation will tacitly be assumed henceforth. ¿erefore the �rst line can
be disposed of and one can use instead the one-line notation

σ = ( σ(1) σ(2) σ(3) ⋯ ) .
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We see that a permutation is equivalent to a change of the linear order of the set S. Further
condensing the one-line notation, the permutations of a �nite ordered set can be identi�ed
with words

σ = σ1σ2σ3 ⋅ ⋅ ⋅,
where the shorthand σi = σ(i), i ∈ S, was used.
4.1.2 Circular permutations

Instead of considering di�erent orderings of a set along a line, one can study di�erent
arrangements of the elements of the set on an oriented circle (turning the circle over
produces in general a di�erent permutation).

Let S be a set with a distinguished element e. ¿e circular permutations of S are the
bijections σ ∶ S → S that preserve e, i.e., σ(e) = e. ¿e circular permutations of S also
form a group, the circular permutation group CS ; if S = [n], de�ne Cn ≐ C[n]. Clearly, CS
is a subgroup ofSS and its cardinality is (n − 1)! if that of S is n.

A cyclic order is a ternary relation [⋅ , ⋅ , ⋅] on a set S is a set of triples T ⊂ S×3 that
satis�es

(a) [a, b, c] ∈ T implies [b, c, a] ∈ T (cyclicity),

(b) [a, b, c] ∈ T implies [c, b, a] ∉ T (asymmetry),

(c) [a, b, c], [a, c, d] ∈ T implies [a, b, d] ∈ T (transitivity),

(d) a, b, c mutually distinct implies either [a, b, c] ∈ T or [c, b, a] ∈ T (totality).

Every (strict) total order < induces a cyclic order by setting [a, b, c] ∈ T if and only if
a < b < c or b < c < a or c < b < a. Conversely, every cyclic order induces di�erent
possible linear orders. Namely, setting a < b if and only if [a, b, e] for �xed e ∈ S yields
a total order on S ∖ {e} which can be extended to a linear order on S by de�ning e as
either the minimal or maximal element of the set. Consequently, the natural choice for the
distinguished element of a �nite ordered set S in the construction above is the minimal or
maximal element of S; we will always choose the minimal element.

¿e di�erent notations for linear permutations generalize straightforwardly to circular
permutations. Given a circular permutation σ of a �nite ordered set S, write

σ = ( 1 σ(2) σ(3) ⋯ ) .
To distinguish circular permutations more clearly from linear ones and to highlight the
circular symmetry, we modify the word-notation in the case of a circular permutation σ to

σ = 1̇σ2σ3 ⋅ ⋅ ⋅ σ̇n ,
in analogy with the notation for repeating decimals when representing rational numbers.
Moreover, for convenience we de�ne σ(n + 1) ≐ σ(1) for all circular permutations σ of
n-element sets.
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4.1.3 Atomic permutations

Let us introduce a special subgroup ofSS for a �nite ordered set S with minimal element e
maximal element m.

De�nition 4.1. De�ne the rising atomic permutations1 A+
S ⊂SS as those permutations that

satisfy σ(e) = e and σ(m) = m for all σ ∈ A+
S . ¿e falling atomic permutations σ ∈ A−

S are
the reversed rising atomic permutations, i.e., σ(e) = m and σ(m) = e.

Naturally, the cardinality of A±
S is (n − 2)!. If S = [n], we write A+

n (A−
n ) and see that it

is the set of permutations of the form 1 ⋅ ⋅ ⋅ n (n ⋅ ⋅ ⋅ 1).
Let us discuss the signi�cance of the atomic permutations. We say that a permutation

σ ∈ SS of S contains an atomic permutation π ∈ AT , T ⊂ S, if π can be considered a
subword of σ . ¿e atomic permutation π in σ is called inextendible if σ contains no other
atomic permutation π′ ∈ AT′ , T ′ ⊂ S, such that T ⊊ T ′.

In particular, any permutation σ ∈SS of S with ∣S∣ ≥ 2 contains an inextendible atomic
permutation π ∈ ST of a subset T ⊂ S that contains both the smallest and the largest
element of S. ¿at is, if S = [n] and we consider σ as a word, it contains a subword π of
the form 1 ⋅ ⋅ ⋅ n or n ⋅ ⋅ ⋅ 1. ¿e permutation π will be called the principal atom of σ .

Proposition 4.2. Any permutation σ ∈SS of a �nite set S ⊂ N can be uniquely decomposed
into a tuple (π1, . . . , πk) of inextendible atomic permutations π i ∈ ATi , Ti ⊂ S (non-empty)
such that π i∣Ti ∣ = π i+11 for all i < k and ∪iTi = S. We call π i the atoms of σ .

Proof. Existence: It is clear that any permutation of a set of 1 or 2 elements is an atomic
permutation. Suppose, for some n ≥ 3, that all permutations of n − 1 elements or less can
be decomposed into inextendible atomic permutations. Without loss of generality, we
show that any non-atomic permutation σ ∈Sn also has a decomposition into inextendible
atomic permutations. Regarding σ as a word, we can write σ = α ⋅ n ⋅ ω, where α and
ω are non-empty subwords. Notice that the permutations α ⋅ n and n ⋅ ω have a unique
decomposition by assumption. Since an atomic permutation begins or ends with the
largest element, we �nd that a decomposition of σ into inextendible atomic permutations
is given by the combination of the decompositions of α ⋅ n and n ⋅ ω.

Uniqueness:¿is is clear from the de�nition of inextendibility. ◻
Because of this property, the atomic permutations will prove to be very useful.

4.1.4 Mountaineering

Given a (linear or circular) permutation σ of an ordered set S of cardinality n, a position
i < n is a descent of σ if σ(i) > σ(i + 1). Any i < n of a permutation σ that is not a descent
is called an ascent of σ . For example, the permutation 52364178 has the descents 1, 4, 5
and the ascents 2, 3, 6, 7, whereas the circular permutation 1̇4536782̇ has the descents
3, 7, 8 and the ascents 1, 2, 4, 5, 6.

All the descents of a (linear or circular) permutation σ can be collected in the descent
set

D(σ) ≐ {i ∣ i is a descent of σ}.
1¿e rationale for this naming should become clear later when we see that arbitrary permutations can be

decomposed into atomic permutations, but no further.
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Figure 4.1. ¿e two directed graphs representing the runs of the linear permutation
52364178 (le ) and the circular permutation 1̇4536782̇ (right). Peaks and valleys are
indicated by boldface numbers.

It is an elementary exercise in enumerative combinatorics to count the number of linear
permutations of [n]whose descent set is given by a �xed S ⊆ [n−1]. Let S = {s1, s2, . . . , sk}
be an ordered subset of [n − 1], then [37, ¿m. 1.4]

β(S) ≐ ∣{σ ∈Sn ∣ D(σ) = S}∣ = ∑
T⊆S(−1)∣S−T ∣(

n
s1, s2 − s1, s3 − s2, . . . , n − sk).

¿is result can also be adapated to circular permutations.
Related to the notions of ascents and descents are the concepts of peaks and valleys. A

peak occurs at position i ∈ [2 . . n−1] of a linear permutation σ if σ(i−1) < σ(i) > σ(i+1),
whereas a valley occurs in the opposite situation σ(i − 1) > σ(i) < σ(i + 1). Again, this
notion can be generalized to circular permutations, where, additionally, 1 is always a valley
and n is a peak if and only if σ(n) > σ(n − 1). In the example above, 4 is a peak 2, 6
are valleys of 52364178, whereas 3, 7 are peaks and 1 is a valley for 1̇4536782̇, see also
Fig. 4.1.

4.2 Run structures

De�nition 4.3. A run r of a (linear or circular) permutation σ is an interval [i . . j] such
that σ(i) ≷ σ(i + 1) ≷ ⋅ ⋅ ⋅ ≷ σ( j) is a monotone sequence, either increasing or decreasing,
and so that it cannot be extended in either direction; its length is de�ned to be j − i. If σ is a
permutation of an n-element set, the collection of the lengths of all runs gives a partition p of
n − 1 (linear permutations) or n (circular permutations). ¿e partition p is called the run
structure of σ .

It follows that a run starts and ends at peaks, valleys or at the outermost elements of a
permutation. For example, the permutation 52364178 has runs [1 . . 2], [2 . . 4], [4 . . 6],[6 . . 8] with lengths 1, 2, 2, 2, whereas the circular permutation 1̇4536782̇ has runs [1 . . 3],[3 . . 4], [4 . . 7], [7 . . 9], of lengths 2, 1, 3, 2. Representing these runs by their image under
the permutation, they are more transparently written as 52, 236, 641, 178 and 145, 53,
3678, 821 respectively. ¿e runs of permutations can also be neatly represented as directed
graphs as shown in Fig. 4.1. In these graphs the peaks and valleys correspond to double
sinks and double sources.

Motivated by a problem in mathematical physics [90] (see also Sect. 4.4), we are
interested in the following issue, which we have not found discussed in the literature.
By de�nition, the run structure associates each permutation σ ∈ Cn with a partition p
of n. For example, 1̇4536782̇ and 1̇3452786̇ both correspond to the same partition
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1 + 2 + 2 + 3 of 8. Our interest is in the inverse problem: given a partition p of n, we ask
for the number ZC(p) of circular permutations whose run structure is given by p. One
may consider similar questions for other classes of permutations, with slight changes; for
example, note that the run structure of a permutation σ ∈Sn is a partition of n − 1.

To put the research in [95] in perspective with the existing literature on the enumerative
cominatorics of permutations, a short remark is in order: ¿e enumeration of permutations
according to their run structure was already discussed by André [16] for alternating
permutations, i.e., permutations that alternate between ascents and descents. In [42] the
enumeration of linear permutations according to the order and length of their runs was
studied, so obtaining a map to compositions, rather than partitions. In contrast to this
approach, the method discussed in [95] was designed to facilitate computation; for the
application in [90] calculations were taken up to 65 runs using exact integer arithmetic in
Maple™ [152].

4.2.1 Atomic permutations

We now begin the enumeration of atomic permutations according to their run struc-
ture. ¿at is, for every partition p of n − 1 we aim to �nd the number ZA(p) of atomic
permutations A±

n of length n.
Observe that any σ ∈ A+

n can be extended to a permutation in A+
n+1 by replacing n

with n + 1 and reinserting n in any position a er the �rst and before the last. ¿us, 13425
can be extended to 153426, 135426, 134526 or 134256. Every permutation in A+

n+1
arises in this way, as can be seen by reversing the procedure. ¿e e�ect on the run lengths
can be described as follows.

Case 1: ¿e length of one of the runs can be increased by one by inserting n either at

1. the end of an increasing run if it does not end in n + 1, thereby increasing its length
(e.g., 13425 → 134526)

n

2. the penultimate position of an increasing run, thereby increasing its own length if
it ends in n + 1 (e.g., 13425 → 135426) or increasing the length of the following
decreasing run otherwise (e.g., 13425 → 134256)

n
n + 1 n n + 1

Case 2: Any run of length i + j ≥ 2 becomes three run of lengths 1, i and j if we insert n
either a er

1. i elements of an increasing run (e.g., 13425 → 153426 exempli�es i = 1, j = 1)
i + j ni j

2. i + 1 elements of a decreasing run (e.g., 14325 → 143526 for i = 1, j = 1)
i + j i n j

An analogous argument can be made for the falling atomic permutations A−
n .



84 Chapter 4. Enumerative combinatorics

Notice that every partition of a positive integer n can be represented by monomials
in the ring of polynomials2 Z[x1, x2, . . . , xn]. Namely, we can express a partition p =
p1 + p2 + ⋅ ⋅ ⋅ + pk as xp1xp2 ⋯ xpk (for example, the partition 1 + 2 + 2 + 3 of 8 is written as
x1x22x3).

Now, let p be a partition and X the corresponding monomial. To this permutation
there correspond ZA(p) permutations in A±

n which can be extended to permutations
in A±

n+1 in the manner described above. Introducing the (formally de�ned) di�erential
operator

D ≐ D0 + D+ with D0 ≐ ∞∑
i=1 xi+1

∂
∂xi

, D+ ≐ ∑
i , j≥ 1 x1xix j

∂
∂xi+ j , (4.1)

we can describe this extension in terms of the action of D on X. We say that D0 is
the degree-preserving part of D; it represents the case 1 of increasing the length of a run:
the di�erentiation ∂/∂xi removes one of the runs of length i and replaces it by a run of
length i + 1, keeping account of the number of ways in which this can be done. Similarly,
case 2 of splitting a run into 3 parts is represented by the degree-increasing part D+. For
example, each of the 7 atomic permutations corresponding to the partition 1 + 1 + 3 can be
extended as

Dx21 x3 = 2x1x2x3 + x21 x4 + x41 x2,
i.e., each can be extended to two atomic permutations corresponding to the partitions
1 + 2 + 3, one corresponding to 1 + 1 + 4 and one to 1 + 1 + 1 + 1 + 2.

¿erefore, starting from the trivial partition 1 of 1, represented as x1, we can construct
a recurrence relation for polynomials An = An(x1, x2, . . . , xn) which, at every step n ≥ 1,
encode the number of atomic permutations ZA(p) of length n + 1 with run structure
given by a partition p of n as the coe�cients of the corresponding monomial in An. ¿e
polynomial An, accordingly de�ned by

An = ∑
p⊢n ZA(p) n∏

i=1 x
p(i)
i , (4.2)

where the sum is over all partitions p of n and p(i) denotes the multiplicity of i in the
partition p, can thus be computed from the recurrence relation

A1 ≐ x1, (4.3a)
An ≐ DAn−1, (n ≥ 2). (4.3b)

We say that the polynomials An enumerate the run structure of the atomic permutations.
We summarize these results in the following proposition:

Proposition 4.4. ¿e number ZA(p) of rising or falling atomic permutations of length
n − 1 corresponding to a given run structure (i.e., a partition p of n), is determined by the
polynomial An via (4.2). ¿e polynomials An satisfy the recurrence relation (4.3).

2If one wants to encode also the order of the run (e.g., to obtain a map from permutations of length n to
the compositions of n), one can exchange the polynomial ring with a noncommutative ring. Alternatively, if
one wants to encode the direction of a run, one could study instead the ring Z[x1 , y1 , x2 , y2 , . . . ], where x i
denotes an increasing run of length i and y j encodes a decreasing run of length j.
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Note that atomic permutations always contain an odd number of runs and thus ZA(p)
is zero for even partitions p.

It will prove useful to combine all generating functions An into the formal series

A(λ) ≐ ∞∑
n=0An+1 λ

n

n!
= ∞∑
n=0 D

nA1
λn

n!
,

which can be expressed compactly as the exponential

A(λ) = exp(λD)A1.

¿e �rst few An are given by

A2 = x2
A3 = x3 + x31
A4 = x4 + 5x2x21
A5 = x5 + 7x3x21 + 11x22x1 + 5x51
A6 = x6 + 9x4x21 + 11x32 + 38x3x2x1 + 61x2x41 .

from which we can read o� that there is 1 permutation in A±
6 corresponding to the trivial

partition 5 = 5, 7 corresponding to the partition 5 = 1+1+3, 11 corresponding to 5 = 1+2+2
and 5 corresponding to 5 = 1 + 1 + 1 + 1 + 1. As a check, we note that 1 + 7 + 11 + 5 = 24,
which is the total number of elements of A±

6 ; similarly, the coe�cients in the expression
for A6 sum to 120, the cardinality of A±

7 . A direct check that the coe�cients in An sum to(n − 1)! for all n will be given in the last paragraph of Sect. 4.3.
¿e �rst degree term A(1)

n of An is xn as can be seen by a trivial induction using
A(1)
n = D0A(1)

n−1, which follows from the recurrence relation (4.3). ¿erefore ZA(n) = 1.
For A(k)

n with k > 1 also the e�ect of D+ has to be taken into account, complicating
things considerably. Nevertheless, the general procedure is clear: once A(k−2)

m is known
for all m < n, A(k)

n can be obtained as

A(k)
n = D0A(k)

n−1 + D+A(k−2)
n−1 = n−1∑

m=k−1 D
n−m−1
0 D+A(k−2)

m .

Here one can make use of the following relation. Applying D0 repeatedly to any monomial
xi1xi2 ⋅ ⋅ ⋅ xik of degree k yields, as a consequence of the Leibniz rule,

Dn
0 xi1xi2 ⋅ ⋅ ⋅ xik = ∑

j1 , j2 ,..., jk ≥ 0
j1+ j2+⋅⋅⋅+ jk=n

( n
j1, j2, . . . , jk

) xi1+ j1xi2+ j2 ⋅ ⋅ ⋅ xik+ jk . (4.4)

¿is observation provides themeans to determine the third degree termA(3)
n . Applying

D+ to any A(1)
m = xm with m ≥ 2 produces x1xpxq with p + q = m and p, q ≥ 1. Moreover,

the repeated action of D0 on x1xpxq is described by (4.4) and thus

A(3)
n = ∑

p,q,r,s,t ≥ 0
1+p+q+r+s+t=n

(n − p − q − 1
r, s, t

) x1+rxp+sxq+t .
A er some algebra this yields
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Proposition 4.5. ¿e third degree term A(3)
n of the polynomial An , n ≥ 3, is given by

A(3)
n = ∑

i , j,k ≥ 1
i+ j+k=n

k∑
q=1

n − q − 1
n − q − j

( n − q − 2
i − 1, j − 1, k − q) xix jxk . (4.5)

¿e equation (4.5) for the third degree term A(3)
n can be rewritten into a formula for

ZA(p1 + p2 + p3), i.e., the number of permutations of [n + 1] that start with 1, end with
n + 1 and have three runs of lengths p1, p2, p3, by changing the �rst sum to a sum over
i , j, k ∈ {p1, p2, p3}. In particular, this gives rise to three integer series for the special cases

ZA(n + n + n), ZA(1 + n + n), ZA(1 + 1 + n),
with n ∈ N.

¿e �rst series

ZA(n + n + n) = n∑
q=1

3n − q − 1
2n − q ( 3n − q − 2

n − 1, n − 1, n − q)
= 1, 11, 181, 3499, 73501, 1623467, . . . (n ≥ 1)

gives the number of atomic permutations with three runs of equal length n. It does not
appear to be known in the literature nor can it be found in the OEIS [164] and the existence
of closed form expression is currently unkown. For the second series, however, a simple
closed form can be found:

ZA(1 + n + n) = n∑
q=1((

2n − q
n − 1 ) + (2n − q − 1

n − 1 )) + 1
2
(2n
n
)

= 2(2n
n
) − 1 = 11, 39, 139, 503, 1847, . . . , (n ≥ 2)

is the number of atomic permutations in A±
2n+2 with two runs of length n. One may

understand this directly: there are (2nn ) permutations in which the length 1 run is between
the others and (2nn ) − 1 in which it is either �rst or last. ¿e third series, ZA(1 + 1 + n), i.e.,
the number of atomic permutations in A±

n+3 with two runs of length 1, is given by the odd
numbers bigger than 3:

ZA(1 + 1 + n) = 2n + 1 = 5, 7, 9, 11, 13, 15, . . . , (n ≥ 2).
Observe that terms of the form xn1 in An encode alternating permutations, which were

already investigated by André in the 1880’s [17]. As a consequence of his results, we �nd
that the alternating atomic permutations are enumerated by the secant numbers Sn, the
coe�cients of the Maclaurin series of sec x = S0 + S1x2/2! + S2x4/4! + ⋅ ⋅ ⋅,

ZA( 2n+1∑
i=1 1) = Sn = 1, 1, 5, 61, 1385, 50521, . . . (n ≥ 0, OEIS series A000364).

¿is is due to the fact that all alternating atomic permutations of [2n] can be understood as
the reverse alternating permutations of [2 . . 2n−1]with a prepended 1 and an appended 2n.
Moreover, since any x2n+11 can only be produced through an application of Don x2x2(n−1)1 ,
we also have ZA(2 +∑2(n−1)

i=1 1) = Sn.

http://oeis.org/A000364
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4.2.2 Circular permutations

¿emethods developed in the last section to enumerate atomic permutations can also be
applied to �nd the number of circular permutations ZC(p) with a given run structure p.
Indeed, any circular permutation in Cn−1 can be extended to a permutation in Cn by
inserting n at any position a er the �rst (e.g., 1̇4532̇ can be extended to 1̇64532̇, 1̇46532̇,
1̇45632̇, 1̇45362̇ or 1̇45326̇). As in the case of atomic permutations, this extension either
increases the length of a run or splits a run into three runs. Namely, we can increase the
length of one run by inserting n at the end or the penultimate position of an increasing
run or we can split a run of length i + j ≥ 2 into three runs of lengths i , j and 1 by inserting
n a er i elements of an increasing run or a er i + 1 elements of a decreasing run.

We introduce polynomials Cn representing the run structures of all elements of Cn, by
analogy with the polynomials An in the previous section:

Cn = ∑
p⊢n ZC(p) n∏

i=1 x
p(i)
i (4.6)

and we say that the polynomials Cn enumerate the run structure of the circular permuta-
tions. In the last paragraph we saw that we can use the di�erential operator D introduced
in (4.1) to �nd a recurrence relation similar to (4.3). Namely,

C2 ≐ x21 , (4.7a)
Cn ≐ DCn−1, (n ≥ 3) (4.7b)

giving in particular

C3 = 2x2x1
C4 = 2x22 + 2x3x1 + 2x41
C5 = 2x4x1 + 6x3x2 + 16x31 x2
C6 = 2x5x1 + 8x4x2 + 6x23 + 62x21 x22 + 26x31 x3 + 16x61

from which we can read o� that there are 2 permutations in C5 corresponding to 5 = 4 + 1,
6 corresponding to the partition 5 = 3 + 2 and 16 corresponding to 5 = 2 + 1 + 1 + 1. As a
check, we note that 6 + 16 + 2 = 24, which is the total number of elements of C5; similarly,
the coe�cients in the expression for C6 sum to 120, the cardinality of C6. More on this
can be found in the last paragraph of Sect. 4.3.

In summary, we have a result analogous to Prop. 4.4:

Proposition 4.6. ¿e number ZC(p) of circular permutations of length n corresponding to
a given run structure p is determined by the polynomial Cn via (4.6). ¿e polynomials Cn
satisfy the recurrence relation (4.7).

Note that circular permutations, exactly opposite to atomic permutations, always
contain an even number of runs and thus ZC(p) is zero for odd partitions p.

¿e enumeration of circular and atomic permutations is closely related. In fact, intro-
ducing a generating function Cas the formal series

C(λ) ≐ ∞∑
n=0Cn+2

λn

n!
= ∞∑
n=0 D

nC2
λn

n!
= exp(λD)C2,

one can show the following:
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Proposition 4.7. ¿e formal power series C is the square of a formal series A; namely,

C(λ) = A(λ)2 = ( exp(λD)A1)2, (4.8)

where A1 ≐ x1.
Proof. ¿ismay be seen in various ways, but the most convenient is to study the �rst-order
partial di�erential equation (in in�nitely many variables)

∂C
∂λ

− DC= 0, C(0) = C2 (4.9)

satis�ed by C.
We can now apply the method of characteristics to this problem. Since it has no

inhomogeneous part, the p.d.e. (4.9) asserts that C is constant along its characteristics. So,
given λ and x1, x2, . . . , let χ1(µ), χ2(µ), . . . be solutions to the characteristic equations
with χr(λ) = xr , i.e., χ1(µ), χ2(µ), . . . are the characteristic curves which emanate from
the point (λ, x1, x2, . . .). ¿en,

C(λ)∣x● = C(0)∣χ●(0) = C2(χ1(0)) = χ1(0)2.
Applying the same reasoning again toA, which obeys the same p.d.e. as Cbut with initial
condition A(0) = A1,

A(λ)∣x● = A(0)∣χ●(0) = A1(χ1(0)) = χ1(0).
¿erefore, Prop. 4.7 follows by patching these two equations together. ◻

As a consequence also the polynomials An and Cn are related via

Cn = n−1∑
m=1(

n − 2
m − 1)AmAn−m . (4.10)

It then follows that the second degree part of Cn is given by

C(2)
n = n−1∑

m=1(
n − 2
m − 1) xmxn−m

and, applying (4.5), that the fourth degree part can be written as

C(4)
n = ∑

i , j,k,l ≥ 1
i+ j+k+l=m

k∑
q=1 2

n − l − q − 1
n − l − q − j

( n − 2
n − l − 1)( n − l − q − 2

i − 1, j − 1, k − q) xix jxkxl .
Similar to the atomic permutations, we �nd that the alternating circular permutations

satisfy (cf. [16, §41])

ZC( 2n∑
i=1 1) = Tn = 1, 2, 16, 272, 7936, 353792, . . . (n ≥ 1, OEIS series A000182)

and also ZC(2 +∑2n−3
i=1 1) = Tn, where Tn are the tangent numbers, the coe�cients of the

Maclaurin series of tan x = T1x1 + T2x3/3! + T3x5/5! + ⋅ ⋅ ⋅. Furthermore, from (4.10) we
�nd the relation

Tn+1 = n∑
m=0(

2n
2m

) SmSn−m ,

http://oeis.org/A000182
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which can be traced back to tan′ x = sec2 x.
To conclude this section, we note that the argument of Prop. 4.7 proves rather

more: namely, that exp(λD) de�nes a ring homomorphism from the polynomial ring
C[x1, x2, . . . ] to the ring of formal power series C[[x1, x2, . . . ]]. ¿is observation can be
used to accelerate computations: for example, the fact that A3 = x3 + x31 implies that

A′′(λ) = A(λ)3 + exp(λD)x3,
which reduces computation of An+3 = Dn+2x1 to the computation of Dnx3. Once A is
obtained, we may of course determine Cby squaring.

4.2.3 Linear permutations

In the last section we studied the run structures of circular permutationsCn and discovered
that their run structures can be enumerated by the polynomials An. One might ask, what
the underlying reason for this is. Circular permutations of [n] have the same run structure
as the linear permutations of the multiset {1, 1, 2, . . . , n}which begin and end with 1. ¿ese
permutations can then be split into two atomic permutations at the occurrence of their
maximal element. For example, the circular permutation 1̇4532̇ can be split into the two
atomic permutations 145 of {1, 4, 5} and 5321 of {1, 2, 3, 5}. ¿is also gives us the basis
of a combinatorial argument for the fact that C= A2. Similarly it is in principle possible
to encode the run structures of any subset of permutations using the polynomials An. ¿e
goal of this section is to show how this may be accomplished forSS for any S ⊂ N.

As in Sects. 4.2.1 and 4.2.2, we want to �nd polynomials

Ln = ∑
p⊢n ZS(p) n∏

i=1 x
p(i)
i

that enumerate the run structure of the permutationsSn+1. ¿is may be achieved in a two
step procedure. Since every permutation has a unique decomposition into inextendible
atomic permutations, we can enumerate the set of permutations according to this decom-
position. ¿e enumeration of permutations by their run structure follows because the
enumeration of atomic permutations has already been achieved in Sect. 4.2.1.

¿e key to our procedure is to understand the factorisation of the run structure into
those of atomic permutations. Considering σ ∈ Sn as a word, we can write it as the
concatenation σ = α ⋅ π ⋅ ω, where π is the principal atom of σ (see Sect. 4.1.3) and α,ω
are (possibly empty) subwords of σ . Since the decomposition of σ into its atoms also
decomposes its run structure, the complete runs of σ are determined by the runs of α ⋅ 1, π
and n ⋅ ω if π is rising, or of α ⋅ n, π and 1 ⋅ ω if π is falling.

Let Sω be the set of letters in ω and de�ne ρ ∶ Sω → Sω to be the involution mapping
the i’th smallest element of Sω to the i’th largest, for all 1 ≤ i ≤ ∣Sω∣. ¿en the run structure
of n ⋅ ω is identical to that of 1 ⋅ ρ(ω), where ρ(ω) is obtained by applying ρ letterwise to
ω. Furthermore, in the case π = 1 ⋅ ⋅ ⋅ n, the combined run structures of α ⋅ 1 and n ⋅ ω are
precisely the run structure of α ⋅ 1 ⋅ ρ(ω), while, if π = n ⋅ ⋅ ⋅ 1, the combined run structures
of α ⋅ n and 1 ⋅ ω precisely form the run structure of α ⋅ n ⋅ ρ(ω). We refer to α ⋅ 1 ⋅ ρ(ω) or
α ⋅ n ⋅ ρ(ω) as the residual permutation.

Summarising, the run structure of σ may be partitioned into that of π and either
α ⋅1⋅ρ(ω) or α ⋅n⋅ρ(ω); accordingly, themonomial for σ factorises into that for the principal
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atom π and that for the residual permutation. ¿erefore, the polynomial enumerating
linear permutations by run structure can be given in terms of the those enumerating
atomic permutations of the same or shorter length and of linear permutations of strictly
shorter length.

¿is argument can be used to give a recursion relation for Ln, which enumerates
permutations of [n + 1] by their run structure. Taking into account that the principal atom
consists of m + 1 letters, where 1 ≤ m ≤ n, of which m − 1 may be chosen freely from the
set [2 . . n], and that it might be rising or falling, and that the residual permutation may be
any linear permutation on a set of cardinality n −m + 1, we obtain the recursion relation

Ln = 2 n∑
m=1(

n − 1
m − 1)AmLn−m , L0 = 1.

Passing to the generating function,

L(λ) ≐ ∞∑
n=0 Ln

λn

n!
,

we may deduce that
∂L
∂λ

= 2A(λ)L(λ). (4.11)

Our main result in this section is:

Proposition 4.8. ¿e run structure of all permutations inSn+1 is enumerated by

Ln = ∑
p⊢n

2∣p∣
ord p

(n
p
) ∣p∣∏
i=1 Ap i , L0 = 1, (4.12)

where the sum is over all partitions p = p1 + p2 + ⋅ ⋅ ⋅ of n, ∣p∣ is the number of parts of
partition, ord p is the symmetry order of the parts of p (e.g., for p = 1 + 1 + 2 + 3 + 3 we
have ord p = 2!2!) and (np) is the multinomial with respect to the parts of p. ¿e generating
function for the Ln is

L(λ) ≐ ∞∑
n=0 Ln

λn

n!
= exp(2∫ λ

0
A(µ)dµ) . (4.13)

Proof. Equation (4.13) follows immediately from (4.11), asL(0) = 1, whereupon Faà di
Bruno’s formula [166, Eq. (1.4.13)] yields (4.12). ◻

To conclude this section, we remark that the �rst few Ln are given by

L1 = 2A1

L2 = 4A21 + 2A2

L3 = 8A31 + 12A1A2 + 2A3

L4 = 16A41 + 48A21A2 + 12A22 + 16A1A3 + 2A4

L5 = 32A51 + 160A31A2 + 120A1A22 + 80A21A3 + 40A2A3 + 20A1A4 + 2A5

L6 = 64A61 + 480A41A2 + 320A31A3 + 720A21A22 + 120A21A4 + 480A1A2A3 + 120A32+ 24A1A5 + 60A2A4 + 40A23 + 2A6.
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Expanding the Ak and writing the Ln instead in terms of xi , we obtain from these

L1 = 2x1
L2 = 4x21 + 2x2
L3 = 10x31 + 12x1x2 + 2x3
L4 = 32x41 + 58x21 x2 + 12x22 + 16x1x3 + 2x4
L5 = 122x51 + 300x31 x2 + 142x1x22 + 94x21 x3 + 40x2x3 + 20x1x4 + 2x5
L6 = 544x61 + 1682x41 x2 + 568x31 x3 + 1284x21 x22 + 138x21 x4 + 556x1x2x3 + 142x32+ 24x1x5 + 60x2x4 + 40x23 + 2x6,

which show no obvious structure, thereby making Prop. 4.8 that much more remarkable.

4.3 Enumeration of valleys

Instead of enumerating permutations by their run structure, we can count the number
of valleys of a given (circular) permutation. Taken together, the terms Cn involving a
product of 2k of the xi relate precisely to the circular permutations Cn with k valleys. Since
any circular permutation in Cn can be understood as a permutation of [3 . . n + 1] with
a prepended 1 and an appended 2 (cf. beginning of Sect. 4.2.3), Cn may also be used to
enumerate the valleys of ordinary permutations of [n − 1]. Namely, terms of Cn+1 with a
product of 2(k + 1) variables xi relate to the permutations ofSn with k valleys (i.e., terms
of Ln+1 which are a product of 2k of the xi).

Let V(n, k) count the number of permutations of n elements with k valleys. ¿en we
see that the generating function for V(n, k) for each �xed n ≥ 1 is

Kn(κ) ≐ n∑
k=1 κ

kV(n, k) = 1
κ
Cn+1(√κ, . . . ,

√
κ)

and we de�ne K0(κ) ≐ 1. ¿e �rst few Kn are

K1(κ) = 1
K2(κ) = 2
K3(κ) = 4 + 2κ
K4(κ) = 8 + 16κ
K5(κ) = 16 + 88κ + 16κ2
K6(κ) = 32 + 416κ + 272κ2,

which coincide with the results in [183]. In particular, the constants are clearly the powers
of 2, the coe�cients of κ give the sequence A000431 of the OEIS [164] and the coe�cients
of κ2 are given by the sequence A000487. Likewise, the coe�cients of κ3 may be checked
against the sequence A000517. In fact, the same polynomials appear in André’s work, in
which he obtained a generating function closely related to (4.14) below; see [16, §158]
(his �nal formula contains a number of sign errors, and is given in a form in which all
quantities are real for κ near 0; there is also an o�set, because his polynomial An(κ) is our
Kn−1(κ)).

http://oeis.org/A000431
http://oeis.org/A000487
http://oeis.org/A000517
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Proposition 4.9. ¿e bivariate generating function, i.e., the generating function for arbitrary
n, is

K(υ, κ) = ∞∑
n=0Kn(κ)

υn

n!
= 1 + 1

κ ∫
υ

0
C(µ)∣x1=x2=⋅⋅⋅=√κ dµ

and is given in closed form by

K(υ, κ) = 1 − 1
κ
+ √

κ − 1
κ

tan (υ√κ − 1 + arctan(1/√κ − 1)). (4.14)

¿is result was found by Kitaev [138] and in the remainder of this section we will show
how it may be derived from the recurrence relation (4.7) of Cn.

To this end, we �rst note that Cn+1 satis�es the useful scaling relation
λn+1Cn+1(x1, x2, . . . , xn) = Cn+1(λx1, λ2x2, . . . , λnxn).

Setting xi = x/λ = √
κ for all i, this implies

λn+1Cn+1(√κ, . . . ,
√
κ) = Cn+1(x , λx , . . . , λn−1x)

and we �nd, by inserting the recurrence relations (4.7) and applying the chain rule, that
with this choice of variables

1
x2
Cn+1(x , λx , . . . , λn−1x) = λx ∂Cn∂x

+ x2 ∂Cn
∂λ

+ 2λCn .
Hence, in turn, Kn(κ) = κ−1Cn+1(√κ, . . . ,

√
κ) satis�es the recurrence relation

Kn(κ) = 2κ(1 − κ)K′n−1(κ) + (2 + (n − 2)κ)Kn−1(κ) (4.15)

for n ≥ 2. For the bivariate generating functionK this, together with K0 = K1 = 1, implies
the p.d.e.

(1 − υκ)∂K
∂υ

+ 2κ(κ − 1)∂K
∂κ

+ (κ − 2)K= κ − 1,
which is to be solved subject to the initial conditionK(0, κ) = 1.

¿e above equation may be solved as follows: �rst, we note that there is a particular
integral 1 − 1/κ, so it remains to solve the homogeneous equation. In turn, using an
integrating factor, the latter may be rewritten as

(1 − υκ) ∂
∂υ

κK√
κ − 1 + 2κ(κ − 1) ∂∂κ κK√

κ − 1 = 0, (4.16)

for which the characteristics obey

dυ
dκ

= 1 − υκ
2κ(κ − 1) .

Solving this equation, we �nd that

υ
√
κ − 1 + arctan 1√

κ − 1 = const
along characteristics; as (4.16) asserts that κK/√κ − 1 is constant on characteristics, this
gives

K(υ, κ) = 1 − 1
κ
+ √

κ − 1
κ

f (υ√κ − 1 + arctan(1/√κ − 1))
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for some function f . Imposing the conditionK(0, κ) = 1, it is plain that f = tan, and we
recover Kitaev’s generating function (4.14).

To close this section, we note that (4.15) has the consequence that Kn(1) = nKn−1(1)
for all n ≥ 2 and hence that Cn+1(1, . . . , 1) = Kn(1) = n! for such n, and indeed all n ≥ 1,
because C2(1, 1) = K1(1) = 1. ¿e generating function obeys

C(λ)∣x●=1 = ∞∑
n=0(n + 1)!

λn

n!
= (1 − λ)−2

for all non-negative λ < 1 from which it also follows that

A(λ)∣x●=1 = (1 − λ)−1 (4.17)

(as A1(1) = 1, we must take the positive square root) and hence An∣x●=1 = (n − 1)! for all
n ≥ 1. ¿is gives a consistency check on our results: the coe�cients in the expression for
An sum to (n − 1)!, the cardinality of A±

n+1, while those in Cn sum to the cardinality of Cn.
Furthermore, inserting (4.17) into the generating functionL(λ) in (4.13), we �nd

L(λ)∣x●=1 = ∞∑
n=0 Ln(1, . . . , 1)

λn

n!
= (1 − λ)−2,

and thus Ln+1(1, . . . , 1) = n!, which is the cardinality ofSn.

4.4 Applications

¿e original motivation for this work arose in quantum �eld theory, in computations
related to the probability distribution of measurement outcomes for quantities such as
averaged energy densities [90]. One actually computes the cumulants κn (n ∈ N) of
the distribution: κ1 = 0, while for each n ≥ 2, κn is given as a sum indexed by circular
permutations σ of [n] such that σ(1) = 1 and σ(2) < σ(n), in which each permutation
contributes a term that is a multiplicative function of its run structure:

κn =∑
σ
Φ(σ)

where Φ(σ) is a product over the runs of σ , with each run of length r contributing a factor
yr . Owing to the restriction σ(2) < σ(n), precisely half of the circular permutations are
admitted, and so κn = 1

2Cn(y1, y2, . . . , yn). ¿us the cumulant generating function is

W(λ) ≐ ∞∑
n=2 κn

λn

n!
= 1
2 ∫

λ

0
dµ (λ − µ)C(µ)∣x●=y●

= 1
2 ∫

λ

0
dµ (λ − µ)A(µ)∣2x●=y●

and the moment generating function is expW(λ) in the usual way. ¿is expression makes
sense a formal power series, but also as a convergent series within an appropriate radius of
convergence. ¿e values of yn depend on the physical quantity involved and the way it is
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averaged. In one case of interest

yn = 8n ∫(R+)×n dk1 dk2⋯dkn k1k2⋯ kn exp [−k1 − (n−1∑
i=1 ∣ki+1 − ki ∣) − kn]

= 2n 2∑
rn−1=0

2+rn−1∑
rn−2=0⋯

2+r2∑
r1=0

n−1∏
k=1(1 + rk)= 2, 24, 568, 20256, 966592, . . . (n ≥ 1)

(the sums of products must be interpreted as an overall factor of unity in the case n = 1).
Numerical investigation leads to a remarkable identity

A(λ)∣x●=y● = 2
1 − 12λ (conjectured)

with exact agreement for all terms so far computed (checked up to n = 65). We do not
have a proof for this statement, but the conjecture seems fairly secure. For example, we
have shown above that A5 = x5 + 7x3x21 + 11x22x1 + 5x51 ; substituting for xn the values of yn
obtained above, we �nd A5 = 995328 which coincides with the fourth order coe�cient in
the expansion

2
1 − 12λ = 2 + 24λ + 576 λ2

2!
+ 20736 λ3

3!
+ 995328 λ4

4!
+ O(λ5).

In [90], this conjecture was used to deduce

exp (W(λ)) = e−λ/6(1 − 12λ)−1/72 (conjectured),

which is the moment generating function of a shi ed Gamma distribution. ¿e other
generating functions of interest, with these values for the xk are

C(λ)∣x●=y● = 4(1 − 12λ)2 , L(λ)∣x●=y● = (1 − 12λ)−1/3 (conjectured).

For example, we have C5 = 2x4x1 + 6x3x2 + 16x31 x2 = 165888 and L5 = 122x51 + 300x31 x2 +
142x1x22 + 94x21 x3 + 40x2x3 + 20x1x4 + 2x5 = 3727360, to be compared with the terms of
order λ3 and λ5, respectively, in the expansions

4(1 − 12λ)2 = 4 + 96λ + 3456 λ
2

2!
+ 165888 λ3

3!
+ 995328 λ4

4!
+ O(λ5),

(1 − 12λ)−1/3 = 1 + 4λ + 64 λ2
2!
+ 1792 λ3

3!
+ 71680 λ4

4!
+ 3727360 λ5

5!
+ O(λ6).

A natural question is whether there are other sequences that can be substituted for
the xk to produce generating functions with simple closed forms. To close, we give three
further examples, with the corresponding generating functions computed. ¿e �rst has
already been encountered in Sect. 4.3 and corresponds to the case xk = 1 for all k ∈ N.

¿e second utilizes the alternating Catalan numbers: setting

x2k+1 = (−1)k
k + 1 (2kk ), (k ≥ 0), x2k = 0, (k ≥ 1)
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and thus A2k = 0, we obtain, again experimentally,
C(λ) = A(λ) = 1, L(λ) = e2λ (conjectured)

with exact agreement checked up to permutations of length n = 65. For example, one sees
easily that with x1 = 1, x3 = −1, x5 = 2 and x2 = x4 = 0, the expressions Ak and Ck given
in Sects. 4.2.1 and 4.2.2 vanish for 2 ≤ k ≤ 6, and have A1 = C1 = 1, likewise, Lk = 2k for
1 ≤ k ≤ 6.

¿ird, André’s classical result on alternating permutations (cf.last and penultimate
paragraph of Sects. 4.2.1 and 4.2.2 respectively) gives the following: setting

x1 = 1 and xk = 0, (k ≥ 2)
we have, using (4.8) and (4.13),

A(λ) = sec λ, C(λ) = sec2 λ, L(λ) = (sec λ + tan λ)2.
It seems highly likely to us that many other examples can be extracted from the structures
we have described.

Moreover, we remark that it is possible to implement a merge-type sorting algorithm,
called natural merge sort [139, Chap. 5.2.4], based upon splitting permutations of an
ordered set S into its runs, which are ordered (alternatingly in ascending and descending
order) sequences Si ⊂ S. Repeatedly merging these subsequences, one ultimately obtains
an ordered sequence. For example, �rst, we split the permutation 542368719 into 542,
368, 71 and 9. ¿en, we reverse every second sequence (depending on whether the �rst
or the second sequence is in ascending order): 542 ↦ 245 and 71 ↦ 17. Depending
on the implementation of the merging in the following step, this ‘reversal’ step can be
avoided. Last, we merge similarly to the standard merge sort: 245 ∨ 368 ↦ 234568,
17 ∨ 9 ↦ 179 and �nally 234568 ∨ 179 ↦ 123456789. Natural merge sort is a fast
sorting algorithm for data with preexisting order. Using the methods developed above to
enumerate permutations by their run structure, it is in principle possible to give average
(instead of best- and worst-case) complexity estimates for such an algorithm.





II
Quantum �eld theory

Is the purpose of theoretical physics to be no more than a cataloging of all
the things that can happen when particles interact with each other and separate?
Or is it to be an understanding at a deeper level in which there are things that
are not directly observable (as the underlying quantized �elds are) but in terms
of which we shall have a more fundamental understanding?

— Julian S. Schwinger, “QuantumMechanics” (2001), p. 24 f.

First, in order to achieve the greatest possible generality we continue our
total boycott of the canonical formalism [...].

— Bryce S. DeWitt, J. Math. Phys. 3 (1962), p. 1073.





5
Locally covariant quantum �eld theory

Summary

In this chapter we will discuss the framework of locally covariant quantum �eld theory.
In its present form it was introduced in [46] but many of its central ideas can already be
found in earlier publications. It may be understood as a generalization of the Haag–Kastler
axioms [109, 110] to curved spacetimes but it also di�ers in some subtle points because the
Haag–Kastler axioms are ‘more global’ (see, for example, [30, 32] on the problem of gauge
theories in locally covariant QFT). A generalization of the Haag–Kastler was performed
by Dimock whose work [72–74] can be understood as the foundation of modern algebraic
QFT on curved spacetime. Building on the work of Dimock, the paradigm of locally
covariant quantum �eld theory should be seen a culmination of work done by Brunetti,
Fredenhagen, Hollands, Kay, Verch, Wald and others on QFT on curved spacetimes, in
particular renormalization, [44, 45, 123, 124, 135, 215] around the turn of the millennium
a er the discovery of the microlocal spectrum condition [45, 181, 182].

A er discussing some general considerations leading to algebraic and locally covariant
quantum �eld theory in the �rst section (Sect. 5.1), we will introduce the the general
framework of locally covariant quantum �eld theory in the second section (Sect. 5.2).
More details on the locally covariant framework may be found in the original publication
[46] or also [89, 190] among many others. ¿is is followed by an abstract study of the
Borchers–Uhlmann algebra, the commutation relations and the �eld equation, which
will lead to the �eld algebra, and the Weyl algebra in the third section (Sect. 5.3), we will
discuss two free bosonic �elds in the locally covariant framework: the scalar �eld and the
Proca �eld.

5.1 General considerations

Quantum �eld theory is a very complex subject which cannot easily be de�ned. ¿is is
partly due to the fact that quantum �eld theory is not so much a physical theory but rather
a language to formulate theories and models. However, a more important reason is that
quantum �eld theory, even many decades a er its inception, has no clear interpretation,
e.g., it is o en not clear what the physical objects are. Nevertheless, it can be considered
one of the most successful scienti�c discoveries ever conceived and some predictions
made by quantum �eld theory have been tested with astonishing precision. For example,
the anomalous magnetic moment of the electron has been measured in agreement with
theoretical predictions in the parts in a trillion range, see [18, 117].

¿e relation of QFT to other theories is schematically depicted in the diagram Fig. 5.1.
In particular, QFTmay be considered as a Lorentz invariant quantummechanics in the case
of in�nitely many degrees of freedom. One can also argue that a consistent reconciliation
of quantum mechanics with special relativity (in particular locality) leads invariably to
QFT, i.e., �elds and an in�nite number of degrees of freedom are necessary, see [149] and
also [52].
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Classical Mechanics QuantumMechanics

Classical Field �eory Quantum Field �eory

Quantization

Quantization

N →∞ N →∞

Figure 5.1. ¿e heuristic relation of quantum �eld theory with classical mechanics,
classical �eld theory and quantum mechanics.

5.1.1 Lagrangian QFT

Quantum �eld theory is usually formulated in the relatively heuristic approach of the
Lagrangian formalism, where, starting from a classical Lagrangian, one imposes the canon-
ical commutation relations between the quantized position and momentum variables. In
analogy to the quantum mechanical harmonic oscillator these yield creation and annihila-
tion ‘operators’ on an abstract representing Hilbert space. Combining the creation and
annihilation operator, one furthermore de�nes the quantum �eld. A speci�c Hilbert space
is then selected by requiring that the annihilation operator annihilates a particular vector
in the Hilbert space, the vacuum, so that one obtains the Fock space representation.

Apart from not being mathematically rigorous, the Lagrangian formalism has several
conceptual drawbacks. First, it neglects a priori the inequivalent irreducible representations
of the canonical commutation relations (as a consequence of the failure of the Stone–von
Neumann theorem in in�nite dimensions) and instead selects the convenient Fock space
representation. However, it is not obvious what is physical and whether the inequivalent
representations are simply mathematical artefacts or physically relevant. Indeed, the
existence of superselection sectors shows that the presence of inequivalent representations
is certainly not irrelevant. A closely related issue is described by Haag’s theorem [110,
Chap. II.1.1] which implies that the standard Fock space representation of the free theory
is inequivalent to the that of the interacting theory.

Second, the fundamental entities in the Lagrangian formalism are ‘operators’ at a
point and thus neither mathematically not physically meaningful. Physically, because it
would require an in�nite amount of energy to localize a �eld a point. Mathematically,
because a �eld at a point is not an operator on a Hilbert space but only an operator-valued
distribution. Instead one should consider �eld which have no sharp localization but are
smeared out over a region of spacetime. ¿at is, the fundamental entities are quantum
�elds smeared with compactly supported test functions.

¿ird, the Lagrangian formalism contains global operators, like the particle number
operator, which are not operationally meaningful because they cannot be reproduced
by measurements in a bounded region of spacetime. In fact, due to the Reeh–Schlieder
theorem, also local number operators cannot exist [110, ¿m. 5.3.2]. In this light the
common interpretation of QFT in terms of localized particles is very problematic. On
curved spacetimes or for accelerated observers the situation is even more problematic: as
shown by the Unruh e�ect, the particle interpretation appears to be context dependent.
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5.1.2 Algebraic QFT and locality

In the algebraic approach to quantum �eld theory, developed by Haag and collaborators,
the problems indicated above are addressed in a conceptually simple way: Rather than
taking as observables operators on a Hilbert space, in the algebraic approach one discards
the concrete representation of the operators and considers only the algebraic relations
satis�ed between the operators. Indeed, the relations between the observables already
contain a large part of the physical content of the theory.

¿e central pillar of algebraic quantum �eld theory is locality, better described by the
German word “Nahwirkungsprinzip”. Locality means that causally unrelated events do
not in�uence each other and it is implemented in the following way: To every spacetime
region U we can associate a local algebra of observables A(U) which can be measured
within U . Consequently, we demand that map U ↦ A(U) forms an inductive system, i.e.,
it satis�es the isotony condition

U ⊂ V Ô⇒ A(U) ⊂ A(V)
or at least that there is an injective homomorphismA(U)→ A(V); the correspondence
U ↦ A(U) for all U is called the net of local algebras. Further, we require that the local
algebras of causally separated, causally convex regions (anti-)commute

U ⨉ V Ô⇒ [A(U),A(V)] = {0}.
In the next section it will become clear how these conditions can be consistently imposed
on di�erent spacetimes.

Following the choice of words of Haag [110], in any concrete case, the smeared quantum
�elds may be seen as a way to ‘coordinatize’ the local algebras. ¿at is, they provide a
map from test functions supported a spacetime region, to the local algebra supported in
that region. From this point of view it seems clear that di�erent quantum �elds can lead
to equivalent algebras. ¿e notion of quantum �elds might become clearer within the
categorical framework to be introduced the next section.

5.2 Framework

5.2.1 Background structure

¿e physical Universe appears to be well-modelled by a connected, oriented and time-
oriented, four-dimensional Lorentzian manifold (M , g ,±, u), i.e., a spacetime as de�ned
in Sect. 2.1. Moreover, for every possible observer to carry out experiments in a �nite
region of spacetime one has to require that J+(x) ∩ J−(y) is compact for all x , y ∈ M. If
we further require that no closed causal curves exist so that time travel is impossible, we
have collected all necessary and su�cient conditions for a globally hyperbolic spacetime.
Accordingly we consider as physical spacetimes all globally hyperbolic spacetimes. Of
course we restrict ourselves to globally hyperbolic spacetimes also for technical reasons.
In particular, only on globally hyperbolic spacetimes do we have a good understanding of
the Cauchy problem for the wave equation.

To implement simultaneously covariance and the principle of locality, i.e., an observer
can conduct experiments in a globally hyperbolic subregion of the Universe and may re-
main ignorant about processes in the complement of that region, we consider asmorphisms
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Figure 5.2. Example of an hyperbolic embedding and a non-hyperbolic embedding; see
also Fig. 2.3.

between globally hyperbolic spacetimesM ,N the isometric embeddings ψ ∶ M → N that
are orientation and time-orientation preserving and whose image ψ(M) is a causally
convex region of N . We call these morphisms hyperbolic embeddings; an example and
a counter-example are shown in Fig. 5.2. If the image of the hyperbolic embedding ψ
contains a neighbourhood of a Cauchy surface in N , we say that it is Cauchy.

¿e set of globally hyperbolic spacetimes as objects with the hyperbolic embeddings
as morphisms forms a category denoted Loc. ¿is category was introduced in [46] and it
is arguably the most fundamental but, as already mentioned in [46], not the only possible
choice to describe local theories. In fact, it has been altered in the literature in various
ways

• to accommodate more background structure by adding to the triple of manifold,
metric and time-orientation, which is each object, additional elements like spin-
structure [193], a�ne, principle and vector bundles [30–32] or external currents
[2];

• to account for additional symmetry by allowing for more general morphisms like
conformal isometries [1, 177, 5];

• to allow for the formulation of theories that are sensitive to the topology of the
manifold, e.g., by restricting the set of objects to manifolds that have certain de
Rahm cohomology groups [1, 5].

More recently, it was suggested by Fewster [85] to consider as objects triples which instead
of a metric have a global (co)frame; the morphisms are changed accordingly. ¿e resulting
category is larger and encompasses the original setting via a forgetful functor but the
additional structure allows for an interesting discussion of the spin-statistics theorem.

5.2.2 Observables

A theory in this categorical framework is a covariant functor from Loc into a category
whose objects describe physical systems and whose morphisms encode embeddings of
physical systems. In quantum �eld theory (on curved spacetimes) in the algebraic formu-
lation, physical systems are modelled by ∗-algebras or C∗-algebras. Denote by ∗Alg the
category whose objects are unital topological ∗-algebras with morphisms given by the unit-
preserving ∗-monomorphisms and call a covariant functorA ∶ Loc→ ∗Alg realizing such
an algebra on each background in Loc a locally covariant theory. ¿e algebraA(M) thus
associated to each spacetimeM ∈ Loc is o en called the algebra of observables although in
many cases it may contain elements that are not actually physically accessible.
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N
M1 M2

ψ1 ψ2

(a)

N
M

ψ

(b)

Figure 5.3. An illustration of (a) two causally disjoint embeddings and (b) a Cauchy
embedding.

Given two hyperbolic embeddings ψi ∶ Mi → N , i = 1, 2, such that the images ψi(Mi)
are causally disjoint in N (cf. Fig. 5.3(a)), we say thatA is causal if

[A(ψ1)A(M1),A(ψ2)A(M2)] = {0}.
Causality ofA is closely related to its tensorial structure as discussed in [48].

¿e theoryA obeys the timeslice axiom if

A(ψ)A(M) =A(N)
for all Cauchy embeddingsψ ∶ M → N (cf. Fig. 5.3(b)). ¿e timeslice axiom is a prerequisite
for the relative Cauchy evolution, which describes the response of the physical system to a
perturbation of the background structure.

More concretely, let (M , g ,±, u) and (M[h], g+h,±, uh) be globally hyperbolic space-
times such that h is a compactly supported symmetric tensor �eld and uh is the unique
time-orientation that agrees with u outside the support of h.1 Consequently there ex-
ist neighbourhoods around two Cauchy surfaces in M[h], one in the past of h and the
other in the future. We can then �nd Cauchy morphisms ι± and ι[h]± from spacetimes
M± ∈ Obj(Loc) intoM andM[h] as shown in Fig. 5.4. Together these Cauchymorphisms
make up the (∗-algebra) homomorphism that is the relative Cauchy evolution map

rce[h] ≐A(ι−) ○A(ι[h]−)−1 ○A(ι[h]+) ○A(ι+)−1.
It was shown in [46] that (in an appropriate topology, see [2, 98] for details),

−2i d
dε
rce[εh]A∣

ε=0 = [T(h),A]
for any A ∈A(M) and where T(h) ∈A(M) is symmetric and conserved. Since T is both
symmetric and conserved it may be interpreted as a stress-energy tensor [46, 97, 98] and,
in fact, in concrete models this interpretation is valid [28, 46, 93, 193].

5.3 Generalized Klein–Gordon �elds

¿e Klein–Gordon �eld is usually the �rst �eld to be discussed when studying quantum
�eld theory. We will be no di�erent although we will perform some straightforward
generalizations. Namely, we will quantize �elds on natural vector bundles that satisfy a

1Note that a possible ‘perturbation’ is alwaysM[0] but there exists also a neighbourhood U of 0 in the
set of compactly supported symmetric covariant two-tensor �elds (with the test function topology) such that(M[h], g + h) is globally hyperbolic for all h ∈ U , see [27, ¿m. 7.2].
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Figure 5.4. Illustration of the morphisms in the relative Cauchy evolution with the un-
perturbed backgroundM on the le and the perturbed backgroundM[h] on the right.
normally hyperbolic equation of motion. ¿e results below are a generalization of those
obtained in [46] for the scalar Klein–Gordon �eld. In principle, further generalizations
of the de�nitions and statements presented below are possible. For example, one can
replace compactly supported p-forms by compactly supported sections of ‘natural’ vector
bundles, i.e., vector bundles that, like the (co)tangent bundle, are functorially constructed
from the geometric structure of the manifold. However, all these generalizations yield
little insight and obfuscate some constructions. Moreover, the requirements imposed by
the usual locally covariant framework make it di�cult to �nd examples that do not just
use a standard tensor bundle tensorized with a vector bundle that is independent of the
geometry of the spacetime.

5.3.1 Borcher–Uhlmann algebra

For every globally hyperbolic spacetimeM, letD be a covariant functor from Loc into the
category of closed nuclear locally convex C-vector spaces such thatD(M) ⊂ Ωp

0(M ,C)
(for �xed p and with the subspace topology) andD(ψ) = ψ∗.

On each spacetimeM we can de�ne a straightforward generalization of the Borchers–
Uhlmann algebra [38, 39, 213] as the unital topological ∗-algebra

U(M) ≐ ⊕
n∈N0

D(M)⊗̂n
with, i.e., the set of tuples ( fn)n∈N0 with fn ∈D(M)⊗̂n such that only a �nite number of fn
is nonzero, together with

(a) addition and scalar multiplication is component-wise,

(b) multiplication given by the canonical isomorphic embedding

D(M)⊗̂m ⊗D(M)⊗̂n Ð→D(M)⊗̂(m+n)
and extends (anti-)linearly to all ofU(M) via the canonical embeddings of these
spaces intoU(M),

(c) a ∗-operation that acts on ( fn) ∈U(M) as ( fn)∗ = ( f ∗n ) and
f ∗n (x1, . . . , xn) = fn(xn , . . . , x1),
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(d) a topology given by the direct sum topology of the test function topology on each
D(M)⊗̂n.2

Assigning to each globally hyperbolic spacetime the Borchers–Uhlmann alge-
bra U(M), we obtain a covariant functor U ∶ Loc → ∗Alg that maps each object to
the algebra and each morphism to the ∗-algebra morphism generated by the natural
pushforward ψ∗, i.e.,

U(ψ)( fn) = (ψ∗ fn) with ψ∗ fn = fn ○ (ψ−1)⊗n
for all ( fn) ∈U(M).

ConsideringD(M) as a topological ∗-algebra where the involution is complex con-
jugation, we can consider it as a functor from Loc to ∗Alg. ¿e natural transformation
Φ ∶D .→U, which for eachM ∈ Obj(Loc) is the canonical map

ΦM ∶D(M)→U(M), f ↦ (0, f , 0, . . . ),
is called the (locally covariant) quantum �eld associated to U. Observe that every ele-
ment inU(M) is a limit of sums and products of ΦM applied to test functions because⊕nD(M)⊗n is dense inU(M).
5.3.2 Field equation and commutator

¿e Borchers–Uhlmann algebra carries no dynamical information and may therefore also
be called the o�-shell �eld algebra. In particular, the theoryU is neither causal nor does it
satisfy the timeslice axiom. To obtain a causal theory that satis�es the timeslice axiom, we
need to implement a �eld equation (an equation of motion) that induces a Cauchy evolution
of the algebra elements and a commutator that ‘separates’ causally disjoint algebra elements.

¿erefore, we assign now to every globally hyperbolic spacetimeM a natural, formally
self-adjoint, Green-hyperbolic operator PM ∶ Ωp(M ,C)→ Ωp(M ,C) such that

ψ∗ ○ PM = PN ○ ψ∗
for ever hyperbolic embedding ψ ∶ M → N . Moreover, we de�ne a functorD as in the
previous section.

As discussed in Sect. 3.6, associated to the Green-hyperbolic operator PM , there exists
on each globally hyperbolic manifold a unique causal propagator GM .

¿e causal propagator is also called the commutator distribution or Pauli–Jordan
distribution (see also Sect. 3.6.2) because it facilitates the de�nition of a commutator on
the algebraU(M). Namely, let f , h ∈D(M) then we de�ne onU(M)

[ΦM( f ),ΦM(h)] ≐ (iGM( f ⊗ h), 0, . . . ). (5.1)

Due to the support properties of the causal propagator, this is exactly the right choice if
one wants to implement Einstein causality.

¿e commutator extends to arbitrary elements ofU(M) in the following way: First,
we notice that the commutator ought to satisfy the Leibniz rule. ¿erefore it may be seen
as a map

D(M)⊗n ⊗D(M)⊗m Ð→D(M)⊗(n+m−2)
2With this topology the algebra is complete and nuclear, and the algebra product is separately continuous.
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for n,m ≥ 1, which can be extended (anti-)linearly to⊕nD(M)⊗n, a dense subalgebra
of U(M). Finally, we can extend the resulting commutator continuously to the whole
algebraU(M). ¿ereby the algebra becomes a Lie algebra.

¿e commutator is of immense physical importance. Foremost, it implements causality
and manifests the principle of locality. Moreover, if the centre of the algebra of observables
with respect to the commutator is non-trivial, the algebra contains unobservables and one
cannot justify calling it ‘algebra of observables’. Nevertheless, non-trivial centres in the
‘algebra of observables’ can lead to important non-local observable e�ects under spacetime
embeddings [194].

Note that the commutator (5.1) de�ned onU(M) is degenerate ifD(M) ∩ kerGM is
non-trivial and thus it leads to an algebra with a non-trivial centre. ¿is problem will be
addressed in the following section, where we introduce the so-called �eld algebra.

5.3.3 Field algebra

¿en, taking the wave operator and the commutator, we can de�ne the (on shell) �eld
algebraF(M) as the unital topological ∗-algebra given for every M ∈ Obj(Loc) by the
quotient

F(M) ≐U(M)/I(M),
whereI(M) is the completion of the ∗-ideal �nitely generated for all f , h ∈D(M) by
(a) the wave equation

ΦM(PM f ) ∼ ΦM(0)
(b) the commutator relation

ΦM( f )ΦM(h) − ΦM(h)ΦM( f ) ∼ [ΦM( f ),ΦM(h)]
¿e topology ofF(M) is the quotient topology with respect toU(M).

Like for the Borchers–Uhlmann algebra,F ∶ Loc → ∗Alg de�nes a functor, where
F(M) is the �eld algebra andF(ψ) the ∗-algebra homomorphism

F(ψ)[F] = [ψ∗F]
on all [F] ∈F(M), which is naturally induced fromU(ψ) via the canonical projection[ ⋅ ] ∶U(M)→F(M). ¿at these assignments give indeed a covariant functor, relies on
the naturality of all involved operators. In particular,

ψ∗(PM f ) = PN(ψ∗ f ) and GM( f ⊗ h) = GN(ψ∗ f ⊗ ψ∗h)
for all ψ ∶ M → N and f , h ∈D(M). Note that the �eld algebra is a Lie algebra, where the
bracket is simply [[F], [H]] ≐ [FH −HF] = [[F ,H]]
for all [F], [H] ∈F(M); the centre is trivial by construction. Moreover, we can construct
a quantum �eld ϕ forF as the natural transformation ϕ ∶D .→F, which is given for each
M ∈ Obj(Loc) by

ϕM ≐ [ ⋅ ] ○ΦM .

¿at is, ϕM is the map f ↦ [(0, f , 0, . . . )] for all test functions f ∈D(M).
¿e following is a standard result, see e.g. [190, Chap. 3.1]:
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Proposition 5.1. ¿e locally covariant theoryF, given by the �eld algebra, satis�es both
causality and the timeslice axiom.

Proof. SinceF(M) is the completion of the algebra generated by ϕM , causality follows
immediately from the support properties of the causal propagator GM .

For the timeslice axiom we only need to show that the algebra in the whole spacetime
can be reconstructed from the algebra in a causally convex neighbourhood N ⊂ M of a
Cauchy surface; N may be considered as a spacetime in Loc with a Cauchy embedding
intoM. Set χ ∈ C∞(M) such that χ = 1 on J+(N) ∖ N and and χ = 0 on J−(N) ∖ N . For
every f ∈D(M) there exists f ′ ∈D(M) given by

f ′ = PM(χGM f )
such that supp f ′ ⊂ N and

f − f ′ = PM((1 − χ)G∨,M f + χG∧,M f ) ∈ kerGM ∩D(M)
¿e statement follows again becauseF(M) is the completion of the algebra generated
by ϕM . ◻

If ω is a state on the Borchers–Uhlmann algebra U(M) for some spacetime M, it
induces a state for the �eld algebraF(M) if it also satis�es the commutation relation

ω(FH) − ω(HF) = ω([F ,H])
and the equation of motion

ω((id⊗⋅ ⋅ ⋅ ⊗ PM ⊗ ⋅ ⋅ ⋅ ⊗ id)F) = 0
for all F ,H ∈U(M). In that case, the state onF(M) is de�ned by the pushforward of ω
by [ ⋅ ]. Conversely, a state onF(M) always induces a state onU(M) by the pullback via[ ⋅ ].
5.3.4 Weyl algebra

¿e disadvantage of the Borchers–Uhlmann algebra and the �eld algebra is that they are
only ∗-algebras and not C∗-algebras and hence cannot generally be represented by an
algebra of bounded operators. However, heuristically speaking, we can exponentiate the
�eld algebra to produce a C∗-algebra, the Weyl C∗-algebra introduced in Sect. 3.2.2.

In this section, set
D(M) = Ωp

0(M ,C)/kerGM .

D extends to a functor from Loc into the category of closed nuclear locally convexC vector
spaces because GM is continuous (so that kerGM is closed) and transforms covariantly
under hyperbolic embeddings (cf. the previous section).

¿en de�ne on every spacetimeM ∈ Loc the Weyl C∗-algebraW(M) obtained from
the Weyl operatorsWM ∶D(M)→W(M) with commutator relation

WM([ f ])WM([h]) = exp ( i
2GM([ f ]⊗ [h]))WM([ f + h])

for every [ f ], [h] ∈D(M) andwherewe denoted also byGM thewell-de�ned pushforward
of GM toD(M) via the canonical quotient map. Again, it may be shown thatW extends
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to a functor from Loc to ∗Alg by the covariance of the commutator distribution.3 ¿e
proof thatW satis�es both causality and the timeslice axiom is very similar to Prop. 5.1
and will not be repeated.

5.3.5 Scalar Klein–Gordon �eld

¿e (free, scalar) Klein–Gordon equation is

(◻ + ξR +m2)φ = 0, (5.2)

where φ ∈ E(M) is the classical Klein–Gordon �eld and the parameters ξ and m ≥ 0 are
the curvature coupling and themass.

One distinguishes in particular between two di�erent curvature couplings: minimal
coupling if ξ = 0 and conformal coupling if ξ = 1/6. ¿e reason for naming ξ = 1/6
conformal coupling is that, in the massless case m = 0, (5.2) is invariant under conformal
isometries, see e.g. [64, 216]. Namely, given a conformal embedding ψ ∶ M → N with
ψ∗h = Ω2g, one �nds

ψ∗ (◻ + 1
6R)φ = Ω3 (◻ + 1

6R)Ω−1ψ∗φ,
where φ ∈ E(M). ¿at is, if φ solves the massless conformally coupled Klein–Gordon
equation on (N , h), then Ω−1ψ∗φ solves the massless conformally coupled Klein–Gordon
equation on (M , g).

¿e �eld algebra for the Klein–Gordon �eld can be constructed exactly as outlined
above, where we choose

PM = ◻ + ξR +m2 and Dφ(M) = D(M ,C),
and denote the resulting functorFφ and the quantum �eld φ̂. ¿eWeyl algebra may be
constructed in a similar way. In case of conformal coupling, the Klein–Gordon �eld can
also be quantized as a conformally locally covariant theory [177, 5].

5.3.6 Proca �eld

¿e �eld equation for the classical Proca �eld Z ∈ Ω1(M) of mass m > 0 is
(δd +m2)Z = 0 (5.3)

and one can almost immediately see that it is not normally hyperbolic. However, applying
the codi�erential to this equation we �nd that δZ = 0 so that (5.3) is equivalent to

(◻ +m2)Z = 0
with the constraint δZ = 0.

¿ere are two equivalent approaches to quantize this constrained system. Both rely on
the same fact that the exterior derivative d and the codi�erential δ commute with (◻+m2)
and thus also with its causal propagator GM [94, 175].

3To be precise, it is also necessary to show that the minimal regular norm behaves in a locally covariant
way. ¿is follows from the Hahn–Banach theorem.
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For �rst approach [55, 94] we notice that (5.3) is pre-normally hyperbolic so that we
can construct the causal propagator

G̃M = GM ○ (m−2dδ + id ).
Accordingly we can perform the construction of the �eld algebra discussed in Sect. 5.3.3
with this propagator. More precisely, we set

PM = δd +m2 and DZ(M) = Ω1
0(M ,C)

and follow throughwith the construction of the �eld algebra, where we denote the resulting
locally covariant theoryFZ and the corresponding quantum �eld Ẑ.

¿e second possibility, which is related to the framework developed in [115], is to
consider

PM = ◻ +m2 and D′
Z(M) = { f ∈ Ω1

0(M ,C) ∣ δ f = 0}
Since every section f ∈D′

Z(M) is coclosed, GM f solves the Proca equation (5.3). We can
then perform the usual construction for the �eld algebra and denote the corresponding
locally covariant theoryF′

Z .

Proposition 5.2. ¿e locally covariant theories FZ and F′
Z are equivalent. ¿at is,

FZ(M) ≃F′
Z(M) for every globally hyperbolic M.

Proof. For every f ∈DZ(M)
m2Ẑ( f ) = Ẑ(m2 f − (δd +m2) f ) = −Ẑ(δd f )

and thus Ẑ(DZ(M)) = Ẑ(D′
Z(M)). ¿en it is easy to check that

(δd +m2) f = (◻ +m2) f and G̃M f = GM f

for all f ∈D′
Z(M). ◻

Similarly, two apparently di�erent Weyl algebras can be constructed for the Proca �eld
and shown to be equivalent.





6
Quantum states

Summary

In Sect. 3.2.1 we already introduced some general features of states on ∗-algebras. In this
section we will discuss features important or speci�c to quantum �eld theory.

We begin our discussion with the introduction of the n-point distributions (Sect. 6.1.1)
associated to (some) states of the algebras de�ned above: the Borchers–Uhlmann algebra,
the �eld algebra and the Weyl algebra. Of particular importance are states which satisfy
the microlocal spectrum condition to be de�ned in Sect. 6.1.2. States which satisfy this
constraint on the wavefront set are the so-called Hadamard states and their singular part
is given by the Hadamard parametrix (Sect. 6.1.3).

A er we introduced these general notions, we will discuss the construction of quantum
states on particular spacetimes. Due to their importance in cosmology and their relative
simplicity, we discuss adiabatic and Hadamard states on cosmological spacetimes in
Sect. 6.2.

6.1 Preliminaries

Let (M , g) be a globally hyperbolic spacetime and let us consider, as in 5.3, p-form �elds.
It is important to notice that none of the results here are fundamentally restricted to the
assumption of p-form �eld and can be easily generalized.

6.1.1 n-Point distributions

LetU(M) be the Borchers–Uhlmann algebra of a quantum �eld theory onM which is
built on a test function spaceD(M) ⊂ Ωp

0(M). Since
U(M) = ⊕

n∈N0

D(M)⊗̂n ,
the topological dual is of the form

U′(M) = ∏
n∈N0

D′(M)⊗̂n ,
where we have used the kernel theorem. In other words, whereas any element ofU(M)
can be understood as a polynomial,U′(M) also contains power series. It follows that the
any state ω onU(M) is uniquely de�ned by a family (ωn)n∈N of n-point distributions (also
called n-point functions or Wightman functions) ωn ∈ D′(M)⊗̂n. If we denote by ΦM
the quantum �eld associated toU(M), then the n-point distributions satisfy

ωn( f1 ⊗ ⋅ ⋅ ⋅ ⊗ fn) = ω(ΦM( f1) ⋅ ⋅ ⋅ΦM( fn))
for all f1, . . . , fn ∈D(M) and n ∈ N.
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¿e connected or truncated n-point distributions ωTn of a state ω are de�ned by the
relation

ωn(x1, . . . , xn) = ∑
P∈Pn∏r∈P ωT∣r∣(xr(1), . . . , xr(∣r∣)), (6.1)

where Pn denotes the (ordered) partitions of the set {1, . . . , n}. ¿erefore, they can be
calculated recursively from the n-point distributions. ¿e �rst two truncated n-point
distributions are

ωT1 (x1) = ω1(x1),
ωT2 (x1, x2) = ω2(x1, x2) − ω1(x1)ω1(x2)

and a general recursive formula is given by

ωTn (x1, . . . , xn) = ωn(x1, . . . , xn) − ∑
P∈Pn∣P∣>1

∏
r∈P ω

T∣r∣(xr(1), . . . , xr(∣r∣)).
¿anks to the close relation of the Borchers–Uhlmann algebra and the �eld algebra,

see the last paragraph of Sect. 5.3.3, the space of states of the �eld algebra is related to a
subspace of the space of states for the Borchers–Uhlmann algebra and a state ω on the �eld
algebra also has associated n-point distributions. ¿ese n-point distributions naturally
satisfy the commutation relations

ωn(x1, . . . , xn) = ωn(x1, . . . , xi+1, xi , . . . , xn)+ ωn−2(x1, . . . , x̂i , x̂i+1, . . . , xn)GM(xi , xi+1),
where the hats denote omitted points, and are weak solutions of the equations of motion

PM(xi)ωn(x1, . . . , xi , . . . , xn) = 0
for all i ∈ [1 . . n]. ¿erefore, if we denote by ΦM the quantum �eld associated toF(M),
the n-point distributions satisfy

ωn( f1 ⊗ ⋅ ⋅ ⋅ ⊗ fn) = ω(ΦM( f1)⋅ ⋅ ⋅ΦM( fn))
independently of the chosen representatives f1, . . . , fn ∈D(M) of [ f1], . . . , [ fn].

¿e de�nition of n-point distributions for a state on theWeyl algebraW(M) is slightly
more involved. n-Point distributions in the algebraic sense only exist for strongly regular
states as de�ned in Sect. 3.2.2, see also [23]. In this case they are de�ned by the relation

ωn( f1 ⊗ ⋅ ⋅ ⋅ ⊗ fn) = (−i)n ∂n

∂t1⋅ ⋅ ⋅∂tn ω(WM(t1[ f1])⋅ ⋅ ⋅WM(tn[ fn]))∣
t●=0
.

Clearly, the n-point distributions of a state on the Weyl algebra satisfy the commutation
relation and the equation of motion.

A state ω is called quasi-free or Gaussian if all its truncated n-point distributions
vanish for n ≠ 2, whence it is completely determined by its two-point distribution ω2. For
a quasi-free state, all odd n-point distributions vanish and all even n-point distributions
are given by

ωn(x1, . . . , xn) =∑
σ
ω2(xσ(1), xσ(2)) ⋅ ⋅ ⋅ω2(xσ(n−1), xσ(n)),

where the sum is over all ordered pairings, i.e., over all permutations σ ∈ Sn such that
σ(1) < σ(3) < ⋅ ⋅ ⋅ < σ(n − 1) and σ(1) < σ(2), . . . , σ(n − 1) < σ(n).
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6.1.2 Microlocal spectrum condition

A quasi-free state ω satis�es themicrolocal spectrum condition [45, 181, 189] if

WF(ω2) ⊂ {(x , x′; ξ,−ξ′) ∈ Ṫ∗(M ×M) ∣ (x; ξ) ∼ (x′; ξ′) and ξ ⊳ 0}, (6.2)

or, in words, the wavefront set of ω2 is contained in the set of (x , x′; ξ,−ξ′) ∈ Ṫ∗(M ×M)
such that x , x′ are connected by a lightlike geodesic γ with cotangent ξ at x and ξ′ is the
parallel transport of ξ to x′ along γ (in symbols: (x; ξ) ∼ (x′; ξ′)) and ξ is future directed
(in symbols: ξ ⊳ 0). ¿at is, (x , x′; ξ,−ξ′) is contained in the wavefront set if (x; ξ) and(x′; ξ′) lie on the same future-directed bicharacteristic strip generated by σ(ξ) = −g(ξ, ξ).

¿e microlocal spectrum condition can also be generalized to states that are not quasi-
free [45, 191]. States that satisfy the microlocal spectrum condition are called (generalized)
Hadamard states.

Let P = ◻ + B, where B is a scalar function, the potential, and G(x , x′) its causal
propagator. If the kernel of the two-point distribution ω2 satis�es the commutator relation
(weakly)

ω2(x , x′) − ω2(x′, x) = iG(x , x′)
then equality of sets holds in (6.2). If, moreover, the two-point distribution is a parametrix
of PM , i.e.a weak bisolution up to smooth terms, then it attains the local1 Hadamard form
in a geodesically convex neighbourhood U ⊂ M

ω2(x , x′) = lim
ε→0+

1
8π2

( u(x , x′)
σε(x , x′) + v(x , x′) ln σε(x , x

′)
λ2

+w(x , x′))
= H(x , x′) +w(x , x′), (6.3)

where we take the weak limit, x , x′ ∈ U , λ ∈ R is arbitrary and the detailed form of the
coe�cients v ,w ∈ Γ(⋀p(TM) ⊠⋀p(TM)) will be discussed in the next section. Above
we used a ‘vectorized’ van Vleck–Morette determinant

u(x , x′) ≐ ∆1/2(x , x′)g[a1 ∣b′1(x , x′) ⋅ ⋅ ⋅ g ∣ap]b′p(x , x′),
which is antisymmetrized in the indices ai and parallel transported along the geodesic
connecting x and x′, and the regularized world function

σε(x , x′) ≐ σ(x , x′) + iε (t(x) − t(x′)) + 1
2 ε

2

with t a smooth time function on (M , g) compatible with the time-orientation.
6.1.3 The Hadamard parametrix

¿e coe�cient functions

v(x , x′) = 1
λ2

∞∑
k=0 vk(x , x′)(

σ(x , x′)
λ2

)k (6.4)

in (6.3) are called Hadamard coe�cients and are another example of bitensors. Note that
the expansion above is an asymptotic expansion in terms of the world function σ and

1Also a globalHadamard form can be formulated [136], but since the discovery of themicrolocal spectrum
condition this global form has lost its importance. In fact, it was shown in [182] that a state that is everywhere
locally of Hadamard form is also globally a Hadamard state.
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cannot be expected to converge unless the spacetime is analytic. Although it can be turned
into a convergent series by replacing the series (6.4) by [24, Chap. 2.5]

n∑
k=0 vk(x , x′)σ(x , x′)k +

∞∑
k=n+1vk(x , x′)χ(α−1k σ(x , x′))

k

for any n ∈ N and some sequence (αk), αk ∈ (0, 1], where χ ∈ C∞0 (R) is 1 in a neighbour-
hood of 0 (note that we omitted the scale λ), this will not concern us any further because
we will only ever need a �nite number of terms.2 ¿erefore, we also de�ne the truncated
local Hadamard parametrix

Hn(x , x′) ≐ lim
ε→0+

1
8π2

( u(x , x′)
σε(x , x′) +

n∑
k=0 vk(x , x′)σ(x , x′)k ln

σε(x , x′)
λ2

).
One can show that there always exists a n ∈ N0 such that

lim
x′→x D(H(x , x′) −Hn(x , x′)) = 0

for all di�erential operators D and n depends on the order of D.
¿e coe�cients vk can be recursively calculated by (formally) applying P toH; One

then �nds the so-called Hadamard recursion relations (cf. [69, 96, 169])

λ2Pu = (2∇σ + σ aa − 2)v0, (6.5a)
λ2Pvk−1 = (2∇σ + σ aa + 2k − 2)kvk , (6.5b)

where we have used the transport operators de�ned in (1.12). It can be shown that the
Hadamard coe�cients are symmetric in their arguments [103, 155]. Together with the
�rst term in (6.3) the Hadamard coe�cients make up theHadamard parametrix H(x , x′),
which is therefore completely determined by the di�erential operator P and the geometry
of the spacetime.

¿e covariant expansion of the Hadamard coe�cients can be e�ciently calculated
using the Avramidi method described in Sect. 1.4.4 using the transport equations (6.5). If
one is only interested in the coincidence limits, one can directly take the limit in (6.5) to
�nd (omitting necessary Kronecker deltas originating from coincidence limits of parallel
propagators)

[v0] = 1
2
[Pu] = 1

2
(B − 1

6
R),

[vk] = 1
2(1 − k)k [Pvk−1], k > 1.

Note that [v0] vanishes for a conformally coupled massless scalar �eld. ¿e coincidence
limit of v1 cannot be found in this easy way and must be calculated directly. A er a lengthy
calculation using pencil and paper or a (fast) calculation using a tensor algebra so ware,
one obtains (again omitting Kronecker deltas)

8[v1] = B2 + 1
3 ◻ B − 1

3RB + 1
36R

2 − 1
90RabR

ab + 1
90RabcdR

abcd − 1
15 ◻ R. (6.6)

2If we inserted this modi�cation into (6.3), the two-point distribution would not be an exact (weak)
solution of P any more, but only up to a smooth biscalar, i.e., it would only be a parametrix.
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Di�erent from v(x , x′), the symmetric bitensor w(x , x′) is not directly determined
by the geometry or a di�erential operator. Instead the term w(x , x′) re�ects the freedom
in the choice of the state. Writing the asymptotic expansion

w(x , x′) = 1
λ2

∞∑
k=0wk(x , x′)(σ(x , x′)λ2

)k ,
we notice that the freedom to choose a state is completely encoded in the �rst coe�cient
w0 and the remaining coe�cients obey the recursion relation [69, 96]

λ2Pwk = 2(k + 1)∇σwk+1 + 2k(k + 1)wk+1 + (k + 1)wk+1σ aa+ 2∇σvk+1 − 2(2k + 1)vk+1 + vk+1σ aa .
A common choice is to set w0 = 0 as in [219]. In any case, w0 must be chosen such that w
is symmetric.

6.2 Construction of states on cosmological spacetimes

Explicit examples of quantum states are known only on a small class of highly symmetric
spacetimes. Below we will �rst discuss the so-called Bunch–Davies state [10, 51, 198], which
can be considered the vacuum state of de Sitter spacetime. ¿en we study a construction of
states on FLRW spacetimes due to Parker [172] called adiabatic states. Although adiabatic
states are in general not Hadamard, indeed only adiabatic states of in�nite order satisfy the
microlocal spectrum condition [134], they can be considered approximateHadamard states
and have proven to be very useful thanks to their relatively straightforward construction.
Since we will make extensive use of adiabatic states when we discuss the semiclassical
Einstein equation on cosmological backgrounds in Chap. 8, they will be treated in some
detail below. Moreover, we will introduce the states of low energy by Olbermann [165],
which are constructed via a careful Bogoliubov transformation from adiabatic states.

6.2.1 Bunch–Davies state

A distinguished Hadamard state for the (massive) scalar �eld on de Sitter spacetime is the
Bunch–Davies state [10, 51, 198]. It is the unique pure, quasi-free Hadamard state invariant
under the symmetries of de Sitter spacetime. Note that equations of motion for the scalar
�eld on de Sitter spacetime are

◻φ + (12ξH2 +m2)φ = 0,
whereH is the Hubble constant,m the mass of the scalar �eld and ξ the curvature coupling,
cf. Sect. 5.3.5. ¿erefore the curvature coupling ξ acts like a mass and we set M2 =
12ξH2 +m2. ¿e Bunch–Davies state is also a Hadamard state in the limitM = 0 but in
that case it fails to be invariant under the symmetries of de Sitter spacetime [10, 11]; below
we assumeM > 0.

Using the function Z de�ned in (2.15), the Bunch–Davies state is the quasifree state
given by the two-point distribution3

ω2(x , x′) ≐ ω2(Z(x , x′)) ≐ M2 − 2H2

8π cos(πυ) 2F1(υ+, υ−; 2; 12(1 + Z)), (6.7)

3More precisely, one should replace Z by Z + iε(t(x) − t(x′)), where t is a smooth time function, and
take the limit ε → 0+. Note that 2F1 has a branch cut from 1 to∞.
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where 2F1 is the analytically continued hypergeometric function and with

υ± ≐ 3
2
± υ and υ ≐

√
9
4
− M2

H2 .

We can rewrite (6.7) into a form which exhibits the Hadamard nature of the state more
clearly. In fact, using well-known transforms [166, Eq. (15.8.10)] of the hypergeometric
function 2F1, one can show

ω2(Z) = H2

8π2
(1 − Z)−1 + M2 − 2H2

8π2
(ṽ( 12(1 − Z)) ln ( 12(1 − Z)) + w̃( 12(1 − Z)))

for ∣Z∣ < 1 (spacelike separated points) with
ṽ(z) = 2F1(υ+, υ−; 2; z),
w̃(z) = ∞∑

k=0
(υ+)k(υ−)k
k!(k + 1)! (ϝ(υ+ + k) + ϝ(υ− + k) − ϝ(k + 1) − ϝ(k + 2)) zk ,

where ϝ is the digamma-function.
In the cosmological chart of de Sitter spacetime the function Z attains the simple

form (2.17) and the spatial sections are �at. ¿erefore, one can represent ω2 as a spatial
Fourier transformation with respect to x⃗ − x⃗′. Indeed, using known integrals of (modi�ed)
Bessel functions [107, §6.672], a lengthy calculation shows [198] (omitting again the ε-
prescription)

ω2(x , x′) = H2(ττ′)3/2
32π2 ∫

R3
e−π Im υH(1)υ (−kτ)H(2)υ (−kτ′) eik⃗⋅(x⃗−x⃗′) dk⃗, (6.8)

where x = (τ, x⃗) and x′ = (τ′, x⃗′) in the conformal coordinates and H(1),H(2) are the
Hankel functions of �rst and second kind.

6.2.2 Homogeneous and isotropic states

It is usually reasonable to restrict ones attention to states that respect the symmetry of
the background spacetime. Under this assumption, a state on a FLRW spacetime should
be both homogeneous and isotropic. ¿at is, if the state is also quasifree, its two-point
distribution needs to satisfy

ω2(x , x′) = ω2(t, t′, x⃗ − x⃗′) = ω2(τ, τ′, x⃗ − x⃗′),
where x = (t, x⃗) = (τ, x⃗) and x′ = (t′, x⃗′) = (τ′, x⃗′) with respect to cosmological or
conformal time.

Under a certain relatively weak continuity assumption on the two-point distribution
(such that they may be represented as bounded operators on a certain Hilbert space and
the Riesz representation theorem can be used [146]), it was shown in [146, 196] that every
quasifree, homogeneous and isotropic state for the scalar �eld is of the form4

ω2(x , x′) = 1(2π)3a(τ)a(τ′) ∫R3
(Ξ(k)Sk(τ)Sk(τ′)
+ (Ξ(k) + 1)Sk(τ)Sk(τ′)) eik⃗⋅(x⃗−x⃗′) dk⃗,

(6.9)

4Note that we omit here and below the necessary ε-regularization of the integral, where one multiplies
the integrand with e−εk and considers the weak limit ε → 0+.
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where k = ∣k⃗∣ and Ξ(k) is a non-negative (almost everywhere), polynomially bounded
function in L1(R+

0 ); for pure states Ξ = 0. Moreover, the modes Sk are required to satisfy
themode equation of motion

(∂2τ + ω2k)Sk(τ) = 0, ω2k ≐ k2 + (ξ − 1
6)a(τ)2R + a(τ)2m2, (6.10)

and the Wronski-determinant condition5

SkS
′
k − S′kSk = i, (6.11)

where both Sk and S
′
k are polynomially bounded in k. States constructed in this manner

are in general not of Hadamard type.
Two important examples of pure Hadamard states expressible in the mode form above

are theMinkowski vacuum state on Minkowski spacetime

1(2π)3 ∫R3

1
2E(k)e−iE(k)(t−t′)eik⃗⋅(x⃗−x⃗′) dk⃗,

with E(k)2 = k2 +m2, and the Bunch–Davies state on the cosmological patch of de Sitter
spacetime (6.8). Interesting examples of non-pure states are the approximate KMS states at
inverse temperature β for the conformally coupled scalar �eld [57]

1(2π)3a(τ)a(τ′) ∫R3
(Sk(τ)Sk(τ′)

eβkF − 1 + Sk(τ)Sk(τ′)
1 − e−βkF ) eik⃗⋅(x⃗−x⃗′) dk⃗

with kF = √
k2 + a(τF)2m2 for some ‘freeze-out’ time τF . ¿ese states are KMS states if

the spacetime admits a global timelike Killing vector �eld which is a symmetry of the state;
they are Hadamard states if the pure state speci�ed by the modes Sk is already a Hadamard
state [57].

Given �xed reference modes χk that satisfy (6.10) and (6.11), all other possible mode
solutions Sk can be constructed via a Bogoliubov transformation, i.e.,

Sk = A(k)χk + B(k)χk with ∣A(k)∣2 − ∣B(k)∣2 = 1,
where A(k) and B(k) are such that k ↦ Sk and k ↦ S′k are (essentially) polynomially
bounded, measurable functions. Note that changing Sk by a phase does not a�ect the
state and therefore B(k) can always be chosen to be real. ¿e choice of A and B thus
corresponds to two degrees of freedom, e.g., the phase of A and the modulus of B. If
the reference modes χk specify a pure Hadamard state, one can show that the modes Sk
with the mixing Ξ(k) specify a Hadamard state as well if and only if (in addition to the
conditions above) knB(k) and knΞ(k) are in L1(R+

0 ) for all n ∈ N and ArgA − ArgB
is measurable [178, 221]. An important example of a Bogoliubov transformation of a
Hadamard state that (clearly) does not give a Hadamard state are the α-vacua associated
to the Bunch–Davies state for which A = sinh α and B = cosh α with α ∈ R.

5Imposing the Wronski-determinant condition guarantees that the imaginary part of the two-point
distribution is given by half the commutator distribution. It is su�cient to impose this condition at one
instance in time.
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6.2.3 Adiabatic states

Any solution of (6.10) and (6.11) is of the form6

Sk(τ) = ρk(τ)√
2

eiθk(τ) with θk(τ) = ∫ τ
ρk(η)−2 dη, (6.12)

where ρk satis�es the di�erential equation

ρ′′k = (ρ−4k − ω2k)ρk = (θ′k2 − ω2k)ρk . (6.13)

ModesWk = σkeiψk/√2 of the form (6.12) with arbitrary σk that do not satisfy the di�er-
ential equation (6.13) can be used to specify initial values for solutions Sk of the mode
equation (6.10), i.e.,

Sk(τ0) =Wk(τ0), S′k(τ0) =W ′
k(τ0)

at some initial time τ0. Using an idea of Parker [172], it can be shown that theWk yield the
solution Sk via a Bogoliubov-like transformation

Sk(τ) = A(τ)Wk(τ) + B(τ)Wk(τ) (6.14)

with time-dependent coe�cients given by

A(τ) = 1 − i∫ τ

τ0
G(η) (A(η) + B(η) e−2iψk(η))dη, (6.15a)

B(τ) = −∫ τ

τ0
A′(η) e2iψk(η) dη (6.15b)

and 2G ≐ σ−2k − ω2kσ2 − σkσ ′′k , where we have suppressed the k-dependence of A, B and G
in all four equations above. Applying arguments from the analysis of Volterra integrals, it
can be shown that 1 − A, A′, B and B′ have the same large k behaviour as G (cf. [146, 165]).
As a consequence, the modes Sk and their derivatives have (almost) the same asymptotic
behaviour as the modesWk if σk looks asymptotically like ω

−1/2
k :

Proposition 6.1. Suppose ∂lτσk = ∂lτ(ω−1/2k ) + O(k−9/2) for all l = 0, 1, 2 such that G =
O(k−m) for some m ≥ 3. ¿e modulus ρk of the modes Sk satis�es

ρk = σk + O(k−1/2−m), ∂nτ ρk = ∂nτ σk + O(k3/2−m)
for all n = 0, 1, 2.
Proof. First note that the assumed bounds of σk and σ ′′k yield

2G = σ−2k − ω2kσ2 − σkσ ′′k = O(k−3),
which is consistent with the assumption on G. Further, recall that 1 − A, A′, B and B′
are O(k−m), too. We then derive from (6.14) that

ρ2k = ∣A+ B e−2iψk ∣2σ2k = σ2k + O(k−1−m)
and thus ρk = σk +O(k−1/2−n). Next we use that ρk satis�es the di�erential equation (6.13)
to �nd

ρ′′k − σ ′′k = (ρ−4k − ω2k)ρk − (σ−4k − ω2k)σk + 2Gσ−1k = O(k3/2−m),
whereby we obtain the estimate for ρ′′k and, a er an integration in time, also that for ρ′k . ◻

6¿e lower limit in the integration is arbitrary as it gives a constant phase.
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In summary, the asymptotic behaviour of the initial values given by ωk �xes the
asymptotic behaviour of the solutions ωk .

We can now construct adiabatic states as in [146, 172] by specifying appropriate initial
values for (6.10) respectively (6.13): Making a WKB-like Ansatz, one �nds the adiabatic
modes of Parker [172]. Namely, the adiabatic modesWk =W(n)

k of order n are modes of
the form (6.12) with σk = σ(n)k , given iteratively via7

(σ(n + 1)k )−4 ≐ ω2k + σ(n)k
′′

σ(n)k
with (σ(0)k )−4 ≐ ω2k .

¿e adiabatic modes W(n)
k are then used to specify initial values for the mode equa-

tion (6.10), e.g., by solving the integral equations (6.15).
A useful result on the asymptotic behaviour of the adiabatic modes is stated in [146,

Lem. 3.2]. Using the fact that ω′k = O(k−1), one can easily improve this lemma to obtain
for all n ∈ N0 and m ∈ N

σ(n)k = O(k−1/2), ε(n)k = O(k−2(n+1)),
∂m

∂τm
σ(n)k = O(k−5/2), ∂m

∂τm
ε(n)k = O(k−2(n+1)) (6.16)

as k → ∞ and where (σ(n)k )−4 = (σ(n − 1)k )−4(1 + ε(n)k ). ¿e asymptotic behaviour of the
coe�cients (6.15) for adiabatic states was analyzed in [146, 165]. It can be found, using the
improved bounds (6.16), that they satisfy

1 − A(k, τ) = O(k−2n−3), B(k, τ) = O(k−2n−3),
A′(k, τ) = O(k−2n−3), B′(k, τ) = O(k−2n−3)

as k →∞.
¿ese results can be seen as a starting point to show the relation between adiabatic

states of a certain order and Hadamard states. Indeed, one can show [134] that adiabatic
states of in�nite order are Hadamard states and that adiabatic states of a �nite order satisfy
a microlocal spectrum condition on a certain Sobolev wavefront set8 of the two-point
distribution.

6.2.4 An adiabatic state for conformal coupling

Let study the construction of the (adiabatic) states already considered in [178, 3], see also
[14, 15]. For a (massive) conformally coupled scalar �eld (ξ = 1/6) the initial values for an
adiabatic state of order zero can be taken to be

χk(τ0) = 1√
2k0

eik0τ0 , χ′k(τ0) = ik0√
2k0

eik0τ0 ,

with k20 ≐ (Ω(0)k )2 = k2+a(τ0)2m2. Note that these initial values are essentially a conformal
transformation of the modes of the Minkowski vacuum.

7¿e notation used here can be transformed into the usual one by setting σ(n)k = (Ω(n)k )−1/2 .
8Sobolev wavefront sets are very similar to the usual wavefront set, but instead of using smooth functions

at the foundation of the de�nition, one uses functions from a Sobolev set of a certain order.
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It is possible solve the mode equation (6.10) with these initial values perturbatively.
For this purpose, de�ne the potential V(τ) = m2(a(τ)2 − a(τ0)2) and make the recursive
Ansatz χk(τ) = ∑n χ(n)k (τ) with the recurrence relation

χ(n)k
′′(τ) + k20χ(n)k (τ) = −V(τ)χ(n − 1)k (τ) (6.17)

with initial condition
χ(0)k (τ) ≐ 1√

2k0
eik0τ . (6.18)

¿e mode equation (6.10) is then solved as described in the proof of the following proposi-
tion:

Proposition 6.2. ¿e recurrence relation (6.17) is solved iteratively (for τ > τ0) by
χ(n)k (τ) = ∫ τ

τ0

sin (k0(η − τ))
k0

V(η)χ(n − 1)k (η)dη (6.19)

and the sum χk(τ) = ∑n χ(n)k (τ) converges.
Proof. Consider for each k the retarded propagator of ∂2τ + k20 given by

∆ret,k( f )(τ0, τ) = ∫ τ

τ0

sin (k0(τ − η))
k0

f (η)dη, τ > τ0,
for all f ∈ C0(I), where I is the domain of the conformal time. Applying ∆ret,k to (6.17), it
can be solved as

χ(n)k (τ) = ∫ τ

τ0

sin (k0(η − τ))
k0

V(η)χ(n − 1)k (η)dη
for τ > τ0.

¿e straightforward estimates

∣χ(n)k ∣ ≤ m2

k0 ∫
τ

τ0
∣V(η)χ(n − 1)k (η)∣dη, ∣χ(n)k ∣ ≤ m2∫ τ

τ0
(τ − η) ∣V(η)χ(n − 1)k (η)∣dη

can be iterated using the initial value χ(0)k = (2k0)−1/2 and the standard ‘trick’ of extending
the integration of a symmetric function over a time-ordered domain to an integration
over a symmetric domain by diving through the appropriate factorial (cf. [178, Prop. 4.4]).
Combining the two estimates, this gives

∣χ(n)k ∣ ≤ 1√
2k0 n!

(m2

k0 ∫
τ

τ0
∣V(η)∣dη)l(m2∫ τ

τ0
(τ − η) ∣V(η)∣dη)n−l (6.20)

for any 0 ≤ l ≤ n. ¿erefore the sum χk(τ) = ∑n χ(n)k (τ) converges absolutely. ◻
Equivalent results can be found in [3, Sect. 2.1], [178, Prop. 4.4] and also [14]. It is clear,

that the recurrence relation can be solved in the same for τ < τ0 by applying the advanced
propagator.

Remark 6.3. ¿e partial modes χ(n)k can be computed as in Prop. 6.2 even if the metric
(equivalently the scale factor) is not smooth. If the scale factor is C0, the resulting mode χk
will be at least C2. ¿is relies crucially on the fact that the curvature, which is not well-de�ned
if a is not at least C2, does not enter the mode equation (6.10).
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6.2.5 States of low energy

Let us de�ne the (unregularized) energy density per mode Sk as

ρ̂(Sk , Sk) ≐ 1
2a4

(S′kS′k + (6ξ − 1)aH(SkSk)′
+ (k2 + a2m2 − (6ξ − 1)a2H2)SkSk). (6.21)

For now, we will not interpret this quantity in any way and leave its derivation to Sect. 7.3.
Given reference modes χk and Bogoliubov coe�cients A, B, the energy density per

mode Sk = Aχk + Bχk is related to the energy density per reference mode χk by
1
2(ρ̂(Sk , Sk) − ρ̂(χk , χk)) = ∣B∣2 ρ̂(χk , χk) + Re (AB ρ̂(χk , χk)) (6.22)

One can now attempt to minimize the energy density per mode by varying the Bogoliubov
coe�cients and we �nd that:

Proposition 6.4. ¿e energy density per mode at a �xed instance of time is minimal if and
only if the Bogoliubov coe�cients are given by (up to unitary equivalence)9

ArgA(k) = π −Arg (ρ̂(χk , χk)), (6.23a)

B(k) = ⎛⎝ ρ̂(χk , χk)
2
√
ρ̂(χk , χk)2 − ∣ρ̂(χk , χk)∣2 −

1
2
⎞⎠
1/2

(6.23b)

and ρ̂(χk , χk)2 > ∣ρ̂(χk , χk)∣2. ¿e inequality is satis�ed for all k > 0 if and only if
√

1 + 4m2

H2 ± 1 ≥ ±12ξ or H = 0, (6.24)

i.e., in particular whenever 0 ≤ ξ ≤ 1/6.
Proof. For �xed B > 0, (6.22) is minimized by ArgA = π − Arg (ρ̂(χk , χk)) so that the
second summand is maximally negative. ¿erefore, minimizing (6.22) is equivalent to
�nding the minima of

B2 ρ̂(χk , χk) + Re (ABρ̂(χk , χk)) = B2 ρ̂(χk , χk) −√
1 + B2B∣ρ̂(χk , χk)∣.

Di�erentiating this expression by B, one �nds that an extremum exists on the positive real
axis only if ρ̂(χk , χk)2 > ∣ρ̂(χk , χk)∣2 and that its locus is given by (6.23b); it is easy to see
that this is indeed an minimum.

Inserting the de�nition (6.21) into the condition ρ̂(χk , χk)2 > ∣ρ̂(χk , χk)∣2, we �nd
that it is equivalent to

k2 + a2(m2 + 6(1 − 6ξ)ξH2) > 0.
If this conditions is to hold for all k > 0, then (6.24) must be satis�ed. ◻

9Recall that, without loss of generality, we can always choose B to be real and positive such that A is
completely determined by its phase.
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Instead of trying to minimize the energy density per mode at an instant, states of low
energy are constructed by minimizing the smeared energy density per mode. ¿at is, by
minimizing

1
2 ∫I f (τ)2(ρ̂(Sk , Sk) − ρ̂(χk , χk))dτ= ∫

I
f (τ)2(∣B∣2 ρ̂(χk , χk) + Re (AB ρ̂(χk , χk)))dτ (6.25)

for a �xed smearing function f ∈ C∞0 (I), where I ⊂ R is the domain of the conformal
time coordinate.

¿is minimization was performed for minimally coupled scalar �elds in [165] to �nd
the so-called states of low energy. It can be shown that the states of low energy satisfy
the microlocal spectrum condition and thus they are Hadamard states. ¿e arguments
presented in [165] can be straightforwardly repeated for the conformally coupled scalar �eld
to �nd states of low energy, which are Hadamard states too. In both cases the Bogoliubov
coe�cients are given as in (6.23) with the replacements

ρ̂(χk , χk)→ ∫
I
f (τ)2 ρ̂(χk , χk)dτ and ρ̂(χk , χk)→ ∫

I
f (τ)2 ρ̂(χk , χk)dτ.

¿ere are good reasons to believe the following:

Conjecture 6.5. States of low energy for arbitrary smearing function, mass and scale factor
exist only in the curvature coupling range 0 ≤ ξ ≤ 1/6. For all such ξ the state satis�es the
microlocal spectrum condition.

¿e crucial point in proving this conjecture is to show that (6.25) has a minimum.
¿is can be shown similar to [165] for the minimally coupled case and the conformally
coupled case. For other values of ξ the proof is more di�cult, but by continuity it is clear
from Prop. 6.4 that for some smearing functions states of low energy exist in the interval
ξ ∈ [0, 1/6] but not outside that range. Namely, if ( fn) is a sequence of functions such that
f 2n converges weakly to the delta distribution, then there exists N such that a state of low
energy exists for all fm, m ≥ N because a minimum exists for f 2 = δ by Prop. 6.4. Once
existence is show, one can expect that the state satis�es the microlocal spectrum condition
using proofs analogous to those in [165].

6.3 Holographic construction of Hadamard states

In the absence of a global timelike Killing �eld on a generic globally hyperbolic spacetime
it is di�cult to �nd physically well-motivated quantum states. ¿erefore, in recent years,
a lot of e�ort was put into the construction of proper Hadamard states on non-trivial
spacetimes. A promising method is the ‘holographic’ construction of Hadamard states
on characteristic surfaces introduced in [64, 157, 159]. ¿e holographic method has been
applied to construct Hadamard states for the conformally coupled, massless scalar �eld [64,
157, 159], the Weyl (massless Dirac) �eld [58, 112], the vector potential [1, 5] and linearized
gravity [29] on asymptotically �at spacetimes and cosmological backgrounds [61, 62]. It
was also used to construct local Hadamard states in lightcones in [65].

Forgetting for a moment the application of the bulk-to-boundary construction to
asymptotically �at spacetimes and limiting ourselves to the scalar �eld, it may be roughly
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sketched as follows (see also [106]). Let (M , g) be a globally manifold with a distinguished
point p such that the future lightcone of p satis�es some technical conditions. ¿e it is
possible to construct on the lightcone (without the tip and as a manifold on its own) a
positive bidistribution λ on all functions on the lightcone that are compactly supported
to the future and falls o� su�ciently fast to the past, such that the antisymmetric part
of λ agrees with the pullback of the commutator distribution on the whole spacetime,
and the wavefront set of λ is of positive frequency with respect to the future-directed
lightlike geodesics through p. ¿is bidistribution has all the necessary properties to de�ne
a state for a quantum �eld theory on the lightcone. Moreover, taking any compactly
supported function in the interior of the lightcone of p, it can be mapped to a function
on the lightcone using the advanced propagator and a pullback such that the resulting
function on the lightcone is compact towards the future and has good fall-o� properties
towards the past of the lightcone. ¿is way one obtains the so-called bulk-to-boundary
(projection) map. Pulling back all functions in the interior of the lightcone to the boundary
of the lightcone using this map, one thus �nds a state for the scalar �eld restricted to the
interior of the lightcone. Applying the propagation of singularities theorem it is possible
to show that the resulting state satis�es the microlocal spectrum condition.

In a second step, on may construct Hadamard states for conformally invariant scalar
�eld on asymptotically �at spacetimes with globally hyperbolic unphysical spacetimes.
First, one notices that boundary of the conformal completion of an asymptotically �at
spacetime in the unphysical spacetimes satis�es all the necessary technical conditions.
¿en one can compose the bulk-to-boundarymap inside the unphysical spacetimewith the
(non-unique) conformal transformation associated with the asymptotically �at spacetime,
to �nd a state for the conformally invariant scalar �eld. Since conformal transformation
leave lightlike geodesics invariant, also this state is of Hadamard form.

In [1, 5] this construction was generalized to the electromagnetic vector potential.
Also in this more complicated case a bulk-to-boundary construction of Hadamard states
was be found, but it involves careful use of the gauge freedom of the vector potential to
construct a positive state. Otherwise, the construction remains largely unchanged.





III
Semiclassical gravity

It is shown in a quite general manner that the quantization of a given system
implies also the quantization of any other system to which it can be coupled.

— Bryce S.
DeWitt, in “Gravitation: An Introduction to Current Research” (1962), p. 272

Oh gravity, thou art a heartless bitch.
— Sheldon Cooper, Season 1, Episode 2, ¿e Big Bang¿eory
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The semiclassical Einstein equation

7.1 Introduction

¿e equation
Gab + Λgab = ω( ∶Tab ∶) (7.1)

is called the semiclassical Einstein equation.1 It is obtained from the ordinary Einstein equa-
tion by replacing the classical stress-energy tensor with the (normal ordered) expectation
value of the stress-energy tensor of a quantum �eld in a suitable quantum state ω. Many
developments in quantum �eld theory on curved spacetimes were driven by problems
related to the quantum stress-energy tensor. See also the monographs [36, 104, 112, 217]
for an overview of the subject.

¿e semiclassical Einstein equation is usually understood as an equation that describes
physics midway between the classical regime covered by the Einstein equation (2.9) and
a full-�edged, but still elusive, quantum gravity. Namely, in the semiclassical Einstein
equation one takes into account that the ‘matter’ content of the universe is fundamentally
of quantum nature as described by quantum �eld theory on curved spacetimes, whereas
the background structure which is the spacetime is treated on a classical level and is not
separately quantized.

On the right-hand side one usually considers only Hadamard states. ¿e reason for
restricting to Hadamard states is that only for Hadamard states the higher moments

ω( ∶Tab(x)∶ ∶Tab(x)∶) etc.

can be de�ned. ¿is is due to the fact that the n-point distributions of a state are distri-
butions and thus they cannot simply be multiplied (cf. Sect. 3.5.7). Since the two-point
distributions of Hadamard states satisfy the microlocal spectrum condition, their wave-
front set is contained inside a convex cone in Ṫ∗(M×M) and hence powers of the n-point
distribution are well-de�ned distributions. ¿is will be discussed in more detail in Chap. 9.

7.2 The stress-energy tensor

While the le -hand side of the semiclassical Einstein equation remains unchanged with
respect to the ordinary Einstein equation, the right-hand side changes quite dramatically.
Namely, the classical stress-energy tensor Tab is replaced by a the expectation value of a
quantum observable ∶Tab ∶ in a certain state ω. For this expression to be mathematically
consistent, we need to require the conservation of the quantum stress-energy tensor, i.e.,∇a ∶Tab ∶ = 0.

1Remember that we chose units such that 8πG = c = 1.
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7.2.1 The stress-energy tensor of the Klein–Gordon �eld

We do not aim at discussing the semiclassical Einstein equation in all possible generality.
Instead we restrict our discussion to the semiclassical Einstein equation sourced by a scalar
�eld. ¿e classical stress-energy tensor of a Klein–Gordon �eld φ with equation of motion

Pφ = (◻ + ξR +m2)φ = 0
may be written as [122]

Tab ≐ 1
2∇a∇bφ2 + 1

4 gab ◻ φ2 − φ∇a∇bφ + 1
2 gabg

cdφ∇c∇dφ+ ξ(Gab −∇a∇b − gab◻)φ2 − 1
2 gabm

2φ2.
(7.2)

It may be obtained by varying the classical action of the scalar �eld with respect to the
metric [216, App. E]. ¿e quantum stress-energy tensor is obtained from the classical
expression (7.2) by replacing products of classical �elds by Wick products of quantum
�elds, i.e.,

∶Tab ∶ ≐ 1
2∇a∇b ∶φ̂2 ∶ + 1

4 gab ◻ ∶φ̂2 ∶ − ∶φ̂∇a∇b φ̂ ∶ + 1
2 gabg

cd ∶φ̂∇c∇d φ̂ ∶+ ξ(Gab −∇a∇b − gab◻) ∶φ̂2 ∶ − 1
2 gabm

2 ∶φ̂2 ∶ . (7.3)

¿is expression is not obviously conserved as

∇a ∶Tab ∶ = −∶(∇b φ̂)(Pφ̂)∶
is not necessarily vanishing even if the Wick square was a solution of the equations of
motion. Nevertheless, either by a judicious choice in the renormalization freedom of∶φ2 ∶ and ∶φ∇a∇bφ ∶ [122] or, equivalently, by a rede�nition of the quantum stress-energy
tensor [154], a conserved quantum stress-energy tensor can be found; here we follow the
approach of Hollands and Wald. While the renormalization freedom can be used to �nd a
conserved stress-energy tensor, it is not possible to impose the equations of motions on a
locally covariant normal ordering prescription [122].

7.2.2 Renormalization of the stress-energy tensor

¿e renormalization freedom of ∶φ̂2 ∶ and ∶φ̂∇a∇b φ̂ ∶ is spanned by m2, R and

gabm4, gabm2R, m2Rab , ∇a∇bR, gab ◻ R, ◻Rab , gabR2,
RRab , RacRcb , gabRcdRcd , RcdRcadb , gabRcde f Rcde f .

We have to split this renormalization freedom into two classes: (a) combinations of terms
that are conserved and represent a true renormalization freedom, and (b) combinations of
terms that are not conserved and need to be �xed to produce a conserved ∶Tab ∶ .

Denote by Iab and Jab the two conserved curvature tensors of derivative order 4:

Iab ≐ 2RRab − 2∇a∇bR − 1
2 gab (R2 + 4 ◻ R) ,

Jab ≐ 2RcdRcadb −∇a∇bR − ◻Rab − 1
2 gab (RcdRcd + ◻R) .

¿e following is o en stated in the form of a conjecture (e.g., in [219]):
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Proposition 7.1. Iab and Jab span the whole space of conserved fourth order local curvature
tensors.

Proof. It is an easy task to con�rm this statement by a direct computation along the lines
of [68]: Taking the linear span of all fourth order curvature tensors

∇a∇bR, gab ◻ R, ◻Rab , gabR2, RRab , RacRcb ,
gabRcdRcd , RcdRcadb , gabRcde f Rcde f ,

one can show that any covariantly conserved combination Cab must be of the form

Cab = α1∇a∇bR − α2gab ◻ R + 2(α1 + α2) ◻ Rab − 1
4(α1 + 2α2)gabR2+ (α1 + 2α2)RRab + (α1 + α2)gabRcdRcd − 4(α1 + α2)RcdRcadb ,

i.e., one obtains (for general metrics) a two-dimensional solution space. For α1 = −2, α2 = 2
and α1 = −1, α2 = 1/2 we recover the tensors Iab and Jab, respectively. ◻
Remark 7.2. In conformally �at spacetimes (e.g., FLRW spacetimes) theWeyl tensor vanishes
and thus the solution space reduces to one dimension as the two tensors become proportional:
Iab = 3Jab. On the level of traces this proportionality holds for all metrics, namely, Iaa =
3Jaa = −6 ◻ R.

We therefore �nd that the conserved renormalization freedom of ∶Tab ∶ is spanned by
m4gab , m2Gab , Iab , Jab . ¿e remaining terms renormalization parameters are �xed by the
requirement of ∶Tab ∶ to be conserved.
7.2.3 Point-splitting regularization of the stress-energy tensor

Up to the renormalization freedom, a normal ordering prescription for the stress-energy
tensor is given by the Hadamard point-splitting method. Given two linear (possibly ten-
sorial) di�erential operators D1, D2, the Hadamard point-splitting method yields the
expectation value of ∶(D1φ̂)(D2φ̂)∶ by seperating points, regularizing and then taking
the coincidence limit, that is

ω( ∶(D1φ̂)(D2φ̂)∶) = lim
x′→x D1D

′
2(ω2(x , x′) −H(x , x′)) = [D1D

′
2w],

where D′
2 acts on x′ and is (implicitly) parallel transported during the limit x′ → x.

In the Hadamard point-splitting approach the stress-energy tensor in a state ω of
su�cient regularity is thus calculated as

ω( ∶Tab ∶) = 1
8π2

(Tab[w] +T cd
ab [∇c∇dw]) + 1

4π2
[v1]gab

+ c1m4gab + c2m2Gab + c3Iab + c4Jab ,
where Tab and T cd

ab are the di�erential operators acting on ∶φ̂2 ∶ and ∶φ̂∇a∇b φ̂ ∶ in (7.3):
Tab ≐ 1

2∇a∇b + 1
4 gab ◻ + ξ(Gab −∇a∇b − gab◻) − 1

2 gabm
2,

T cd
ab ≐ −δcaδdb + 1

2 gabg
cd .
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Furthermore, ci are dimensionless (renormalization) constants �xed once for all space-
times2 and the addition of the Hadamard coe�cient [v1] (see (6.6) for an explicit expres-
sion) makes the quantum stress-energy tensor conserved because

lim
x′→x∇′

aPH(x , x′) = − 1
4π2

∇a[v1].
Observe that c1m4gab can be interpreted as a renormalization of the cosmological constant
and c2m2Gab corresponds to a renormalization of Newton’s gravitational constant G; the
remaining two terms have no classical interpretation.

7.2.4 Trace of the stress-energy tensor

Because of its simple form, a �rst step towards analyzing the stress-energy tensor of a
scalar �eld is o en the study its trace, which is given by

∶T ∶ ≐ gab ∶Tab ∶ = −m2 ∶φ̂2 ∶ + 3( 16 − ξ) ◻ ∶φ̂2 ∶ − ∶φ̂Pφ̂ ∶ . (7.4)

It follows that the trace of the stress-energy tensor is calculated via point-splitting as

ω( ∶T ∶) = −(m2 − 3( 16 − ξ) ◻) 1
8π2

[w] + 1
4π2

[v1]
+ 4c1m4 − c2m2R − (6c3 + 2c4) ◻ R, (7.5)

where ci are the same constants as above and we used

lim
x′→x PH(x , x′) = − 3

4π2
[v1].

Equations (7.4) and (7.5) clearly show the so-called trace anomaly [219]. Namely,
because the normally ordered quantum �eld does not satisfy the equations of motion, the
massless, conformally coupled scalar �eld (m = 0 and ξ = 1/6) has non-vanishing trace of
the stress-energy tensor although it is conformally invariant. It is not possible to remove
the trace anomaly by a judicious choice of the renormalization constants because [v1]
is not a polynomial of m4, m2R and ◻R. ¿e trace anomaly is a distinct feature of the
quantum theory and does not appear in a classical theory because the classical �elds are
solutions of the equation of motion.

7.3 The semiclassical Friedmann equations

On FLRW spacetimes (M , g) the classical Einstein equation (2.9) simpli�es signi�cantly
to the �rst and second Friedmann equation (2.18) and (2.19). Since the le -hand side
remains unchanged when crossing over to the semiclassical Einstein equation, also the
semiclassical equations must simplify in an analogue way for every state that satis�es the
equation. Whence one obtains the semiclassical Friedmann equations

6H2 + R = 2ω( ∶ρ ∶) + 2Λ, (7.6a)
6(Ḣ +H2) = −ω( ∶ρ ∶ + 3 ∶p∶) + 2Λ = −ω( ∶T ∶ + 2 ∶ρ ∶) + 2Λ, (7.6b)

2c1 , c2 are due to the renormalization of ∶φ̂2 ∶ and c3 , c4 correspond to the renormalization freedom of∶φ̂∇a∇b φ̂ ∶
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where the quantum energy-density ∶ρ ∶ and the quantum pressure ∶p∶ are constructed out of
the quantum stress-energy tensor just like their classical analogues are obtained from the
classical stress-energy tensor. Henceforth wewill restrict again to �at FLRW spacetimes but
similar statements can also be made in the case of elliptic and hyperbolic spatial sections.

States that satisfy the semiclassical Einstein equation need to respect the symmetries of
the spacetime. ¿erefore, any candidate state for a solution of the semiclassical Friedmann
equations must be homogeneous and isotropic. ¿at is, under reasonable assumptions, it
must be a state of the form discussed in Sect. 6.2.2. Important examples of homogeneous
and isotropic states are the adiabatic states (Sect. 6.2.3) and the states of low energy
(Sect. 6.2.5).

7.3.1 Semiclassical Friedmann equations for the scalar �eld

For the scalar �eld, the energy density and pressure are obtained from (7.3) and they read

∶ρ ∶ = (( 12 − ξ)∂2t − ( 14 − ξ) ◻ + 3ξH2 + 1
2m

2) ∶φ̂2 ∶ − ∶φ̂ (∂2t − 1
2 ◻)φ̂ ∶ , (7.7)

3 ∶p∶ = (( 12 − ξ)∂2t + ( 14 − 2ξ) ◻ − ξ(6Ḣ + 9H2) − 3
2m

2) ∶φ̂2 ∶ − ∶φ̂ (∂2t + 1
2 ◻)φ̂ ∶

with respect to cosmological time t. ¿e expressions for conformal time τ are given by the
replacement ∂t ↦ a−1∂τ . A short calculation shows that the di�erence 3 ∶p∶ − ∶ρ ∶ agrees
with (7.4).

¿e expectation values of ∶ρ ∶ and ∶p∶ in a state ω can again be calculated via Hadamard
point-splitting. For the energy density this approach yields:

ω( ∶ρ ∶) = P[w] − lim
x′→x [(∂2t − 1

2 ◻)w] − 1
4π2

[v1]
− c1m4 + 3c2m2H2 − 6(3c3 + c4)(2HḦ − Ḣ2 + 6H2Ḣ), (7.8)

where we have used the di�erential operator

P ≐ ( 12 − ξ)∂2t − ( 14 − ξ) ◻ + 3ξH2 + 1
2m

2

and the renormalization constants ci are again the same as in Sects. 7.2.3 and 7.2.4. ¿e
coincidence limit of the Hadamard coe�cient v1 on FLRW spacetimes can be obtain from
(6.6):

2[v1] = 1
4m

4 − 3( 16 − ξ)(Ḣ + 2H2)m2 + 9( 16 − ξ)2(Ḣ2 + 4ḢH2 + 4H4)
− 1

30(ḢH2 +H4) + 1
12( 15 − ξ) ◻ R. (7.9)

¿e point-split expression for ω( ∶p∶) will not concern us here and is le as an exercise to
the reader.

¿e next step is to replace the Hadamard point-splitting prescription with something
a that is slightly more useful under the given circumstances.

7.3.2 Adiabatic regularization

An e�ective means of regularizing in momentum space is provided by the adiabatic
regularization [50, 173], which is essentially equivalent to the Hadamard point-splitting
regularization discussed above. In the adiabatic regularization prescription one subtracts
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from a homogeneous and isotropic state ω the bidistribution speci�ed by the adiabatic
modesW(n)

k of su�ciently high order n. ¿e usefulness of this prescription lies in the
fact that the bidistributions constructed out of the adiabatic modes satisfy the microlocal
spectrum condition in the Sobolev sense up to a certain order. Consequently, the two
regularization prescriptions can only di�er by local curvature tensors because both the
Hadamard parametrix and the adiabatic modes are constructed from the local geometric
structure of the spacetime.

It is therefore necessary to �nd the di�erence between point-splitting and adiabatic
regularization

lim
x′→x D(Hn(x , x′) − 1(2π)3a(τ)a(τ′)∫R3

W(m)
k (τ)W(m)

k (τ′) eik⃗⋅(x⃗−x⃗′) dk⃗) (7.10)

for various (bi)di�erential operators D on C∞(M × M) and the minimal orders n,m
depending on the order of D. Note that we omitted the necessary ε-regularization in the
integrand.

It is helpful to note that the (truncated) Hadamard parametrix on FLRW is spatially
isotropic and homogeneous and therefore H(τ, x⃗; τ′, x⃗′) = H(τ, τ′, ∣x⃗ − x⃗′∣). ¿is fact
can simplify some computations because the coincidence limit can be taken in two steps:
�rst one takes the limit onto the equal time surface τ = τ′ and then the spatial coincidence
limit x⃗′ → x⃗. Making e�cient use of the equation of motion, this has the advantage that
we can replace any higher than �rst order time derivative in Dby a spatial derivative and
one needs to calculate the temporal coincidence limit only with the di�erential operators
∂τ , ∂′τ and ∂τ∂′τ . A proof of this statement can be found in [196, Chap. 5].

¿e computation (7.10) can be done in a general and e�cent manner with a computer
algebra system by combining the method of Avramidi to calculate Hadamard coe�cients
(Sect. 1.4.4), the coordinate expansion of the world function (Sect. 1.4.5) and analytic
Fourier transformation. See also [83] for a related approach or [196] for a di�erent method
that makes more e�cient use of the symmetries of FLRW spacetimes.

¿e di�erence between point-splitting and adiabatic regularization for theWick square
can be calculated in this way as

lim
x′→x (H0(x , x′) − 1(2π)3a2 ∫R3

1
2ωk

eik⃗⋅(x⃗−x⃗′) dk⃗)
= B
16π2

(1 − 2γ − ln ( 12 λ2B)) + R
288π2

,
(7.11)

where we used the potential B = m2 + (ξ − 1
6)R and γ denotes Euler’s constant.

¿e exact form of the mode subtraction performed in the adiabatic regularization
is inessential as long as it has the right k⃗-asymptotics (cf. [196, Chap. 5]). For example,
instead of subtracting the adiabatic modes of order zero in (7.11), one can perform the
following subtraction (cf. [178, 3] and Sect. 8.1.4):

lim
x′→x (H0(x , x′) − 1(2π)3a2 ∫R3

( 1
2ωk(η) −

ω2k − ωk(η)2
4ωk(η)3 ) eik⃗⋅(x⃗−x⃗′) dk⃗)

= B(η)a(η)2
16π2a2

− B
16π2

(2γ + ln λ2a(η)2B(η)
2a2

) + R
288π2

,
(7.12)

where η is an arbitrary instant in conformal time. But this realization is much more
important once one attempts to calculate the adiabatic subtraction with several derivatives
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such as the energy density, where higher order adiabatic modes need to be subtracted.
Here one generically �nds that the adiabatic regularization involves terms with higher
derivatives of the metric that do not become singular in the coincidence limit, i.e., terms
which do not need to be subtracted to achieve the regularization.

To �nd an adiabatic subtraction for other components of the stress-energy tensor
one can follow the approach of Bunch [50] and take the second order adiabatic modes
but discard all (non-singular) terms involving higher than fourth order time-derivatives
of the metric. Comparing this subtraction scheme with the Hadamard point-splitting
regularization for the energy density, we �nd (see also [114])

lim
x′→x

⎛⎝ Dρ a(τ)a(τ′)H1(x , x′) − 1(2π)3a2 ∫R3
eik⃗⋅(x⃗−x⃗′)( k

2a2
+ m2 − 6(ξ − 1

6)H2

4k

− m4a2 + 12(ξ − 1
6)m2a2H2 + 36(ξ − 1

6)2(6H2Ḣ − Ḣ2 + 2HḦ)
16k3

)dk⃗⎞⎠
= − 1

4π2
[v1] − H4

960π2
+ (2 − 2γ + ln a2

2λ2
) m4

64π2

+ (1 + 18(ξ − 1
6)(2 − 2γ + ln a2

2λ2
))m2H2

96π2
+ 3(ξ − 1

6)2H2R
8π2

+ ( 1
17280π2

− ξ − 1
6

288π2
− (ξ − 1

6)2
32π2

(2 − 2γ + ln a2

2λ2
))I00, (7.13)

where the (bi)di�erential operator

2a4Dρ = a2(m2 + (1 − 6ξ)H2) ⊠ id + 2(6ξ − 1)aH∂τ ⊠ id + ∂τ ⊠ ∂τ + 3∑
i=1 ∂x i ⊠ ∂x i

can be derived from (7.7). In the case of conformal coupling it is in fact su�cient to work
with adiabatic modes of order zero for this computation and many of the terms in the
above formula drop out.

Observe that both the point-splitting regularization with the truncated Hadamard
parametrix and the adiabatic regularization do not depend on arbitrarily high derivatives
in the metric. Consequently, it is possible to perform both regularization schemes in
non-smooth spacetimes. ¿is will be essential in Chap. 8.
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Solutions of the semiclassical Einstein eq.

Introduction

If one wants to attach any physical meaning to the semiclassical Einstein equation (7.1), it
is necessary that solutions of this equation exist and that it possesses a well-posed initial
value problem. It is not di�cult to show that solutions do indeed exist at least in two
very special scenarios: Minkowski spacetime and de Sitter spacetime. In both cases the
semiclassical Einstein equation (or, alternatively, the semiclassical Friedmann equations)
can be solved for a speci�c choice of the renormalization constants.

Solutions of the semiclassical Friedmann equations were investigated already numer-
ically by Anderson in a series of four articles beginning with the massless conformally
coupled scalar �eld [12, 13] and later also considering the massive �eld [14, 15]. Anderson
discovered a complex landscape of solutions depending on the choice of renormaliza-
tion constants and studied in particular solutions which show an asymptotically classical
behaviour at late times.

More recently, Pinamonti discussed the local existence of solutions to the semiclassical
Friedmann equations in so-called null Big Bang (NBB) spacetimes [178], where initial
values are speci�ed on the initial lightlike singularity.

In [3] the author and Pinamonti proved for the �rst time the existence of global
solutions to the semiclassical Einstein equation coupled to a massive, conformally coupled
scalar �eld in ‘non-trivial’ spacetimes. More precisely, it was shown that the semiclassical
Friedmann equations can solved simultaneously for the spacetime metric (i.e., the scale
factor or theHubble function) and a quantum state from initial values given at someCauchy
surface. ¿is was achieved by showing existence and uniqueness of local solutions for given
initial values and subsequently extending local solutions to a maximal solution that cannot
be extended any further because it exists either eternally or reaches a singularity. In this
chapter, a slightly updated version of the results of [3] will be presented and complemented
with recent numerical results.

In more generality, solving the semiclassical Einstein equations for a given quantum
�eld means the following:

Given initial values for a spacetime metric and a quantum state prescribed on a three-
dimensional Riemannian manifold (Σ, h), do there exist a globally hyperbolic manifold(M , g) of which (Σ, h) is a Cauchy surface and a state ω (preferably a Hadamard state)
such that the semiclassical Einstein equation (7.1) is ful�lled?

In a concrete case this problem can be tackled by selecting a class of globally hyperbolic
spacetimes that are foliated by the same topological Cauchy surface and a functional that
associates to each spacetime in this class a unique states. For this approach to succeed, it is
expected that the mentioned functional must satisfy some minimal regularity conditions
with respect to the metric, e.g., continuous di�erentiability.
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8.1 Preliminaries

8.1.1 The traced stress-energy tensor

Recall from Sect. 7.2.4 that the expectation value of the traced stress-energy tensor for a
massive, conformally coupled scalar �eld reads

ω( ∶T ∶) = −m2ω( ∶φ̂2 ∶) + 1
4π2

[v1] − (6c3 + 2c4) ◻ R (8.1)

= − m2

8π2
[w] + 1

4π2
[v1] + 4c1m4 − c2m2R − (6c3 + 2c4) ◻ R,

where the Hadamard coe�cient [v1] is obtained from (7.9) with ξ = 1/6 as
[v1] = −H2

60
(Ḣ +H2) − 1

720
◻ R + m4

8
.

Working with the traced stress-energy tensor ∶T ∶ simpli�es calculations considerably
compared to the energy density ∶ρ ∶ given by (7.8).

In order to �nd solutions of the semiclassical Friedmann equation with the meth-
ods discussed here, it is necessary to �x the renormalization constants according to the
following rules:

We will choose c3, c4 in such a way as to cancel higher order derivatives of the metric
coming from [v1]. Following [218] and [217, Chap. 4.6], this is necessary because we
want to have a well-posed initial value problem for a second-order di�erential equation.
Removing the ◻R term might not be suitable for describing the physics close to the initial
Big Bang singularity. In the Starobinsky model this term is the single term which is
considered to drive a phase of rapid expansion close to the Big Bang, see the original paper
of Starobinsky [201], its further development [141] and also [112, 114] for a recent analysis.
However, this is surely suitable to describe the physics in the regime where ◻H ≪ H4.

Furthermore, remember that changing c1 corresponds to a renormalization of the
cosmological constant Λ, whereas a change of c2 corresponds to a renormalization of the
Newton constant G (cf. Sect. 7.2.3). For this reason we choose c1 in such a way that no
contribution proportional to m4 is present in ω( ∶T ∶) and we set c2 in order to cancel the
terms proportional to m2R in ω( ∶T ∶). All in all, we �x the renormalization constants as

4c1 = − 1
32π2

, c2 = 1
288π2

and 6c3 + 2c4 = − 1
2880π2

.

8.1.2 The semiclassical Friedmann equations

We can rewrite the semiclassical Friedmann equations to make use of the simplicity
of the traced stress-energy tensor for the conformally coupled scalar �eld: Adding the
equations (7.6) (for �at FLRW spacetimes) yields

− 6(Ḣ + 2H2) = ω( ∶T ∶) − 4Λ. (8.2)

Since ∶T ∶ = 3 ∶p∶ − ∶ρ ∶ , this equation is equivalent to (7.6) if we also specify an initial value
ρ0 ≐ ω( ∶ρ ∶)(τ0) for the expectation value of the energy density at a time τ0:

3H2
0 ≐ 3H(τ0)2 = ρ0 + Λ. (8.3)
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We call (8.3) the constraint equation because it relates the initial valueH0 for the spacetime
geometry with the initial value ρ0 for its matter content; these values cannot be �xed
independently.

Inserting (8.1) into (8.2) and solving for Ḣ we thus �nd

Ḣ = 1
H2
c −H2 (H4 − 2H2

cH2 − 15
2 m

4 + 240π2(m2ω( ∶φ̂2 ∶) + 4Λ)), (8.4)

which can integrated in conformal time to give

H(τ) = H0 + ∫ τ

τ0

a(η)
H2
c −H(η)2 (H(η)4 − 2H2

cH(η)2 − 15
2 m

4

+ 240π2(m2ω( ∶φ̂2 ∶)(η) + 4Λ))dη, (8.5)

where H2
c ≐ 1440π2/(8πG) = 180π/G. ¿is integral equation will be our principal tool to

solve the semiclassical Einstein equation.

8.1.3 A choice of states

As discussed in the introduction, a possible approach to solving the semiclassical Einstein
equation is to select a class of candidate spacetimes and then for each of these spacetimes a
unique state. Here we restrict ourselves to the semiclassical Friedmann equations as given
by (8.2) and (8.3), viz., the candidate spacetimes are �at FLRW spacetimes. It remains to
�nd a functional that associates to each �at FLRW spacetime a suitable state.

It would be desirable to associate to each spacetime a Hadamard state. In the literature
there are a few concrete examples of such states but unfortunately none of them are suitable
for our purposes. On FLRW spacetimes there is the notable construction of states of low
energy discussed in Sect. 6.2.5, which are also Hadamard. But the employed construction
is based on a smearing of the modes with respect to an extended function of time and a
priori we do not even know if a solution of (8.5) exists in the future of the initial Cauchy
surface. ¿e holographic constructions of Hadamard states, discussed in Sect. 6.3, requires
that the spacetime has certain asymptotic properties which are not under control for
generic FLRW spacetimes.

Moreover, for technical reasons to be discussed later, we also have to consider space-
times with C1 metrics. But on spacetimes with non-smooth metrics Hadamard states
cannot exist. Instead we will use the construction of adiabatic states of order zero as
presented in Sect. 6.2.4, which is also applicable to spacetimes with low regularity. ¿e
price we have to pay for working with non-Hadamard states is that the solutions of (8.5)
are not be smooth spacetimes.

We recall, that the states constructed in Sect. 6.2.4 are of the form

ω2(x , x′) = 1(2π)3a(τ)a(τ′) ∫R3
χk(τ)χk(τ′) eik⃗⋅(x⃗−x⃗′) dk⃗ (8.6)

with modes χk = ∑n χ(n)k (τ) given by
χ(0)k (τ) = 1√

2k0
eik0τ , χ(n)k (τ) = ∫ τ

τ0

sin (k0(η − τ))
k0

V(η)χ(n − 1)k (η)dη,
where k20 = k2 + a(τ0)2m2 and V(τ) = m2(a(τ)2 − a(τ0)2). Note that χk and ω2 can be
de�ned in this way even if the scale factor a is only C1. ¿is may be con�rmed by taking a
closer look at Prop. 6.2.
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8.1.4 Adiabatic regularization of the Wick square

¿e integral equation (8.5) does not contain the two-point function but instead only its
smooth part w in the coincidence limit, i.e., Hadamard point-splitting has to applied
to (8.6).

¿e equation (8.5) that we seek to solve contains the Wick square ∶φ̂2 ∶ in a state ω and
thus (on a smooth spacetime) we would need to compute

ω( ∶φ̂2 ∶) = lim
x′→x (ω2(x , x′) −H(x , x′)) − 4c1m4 + c2m2R. (8.7)

Since we are on a FLRW spacetime, we can use the method of adiabatic regularization
instead (Sect. 7.3.2) to perform an equivalent subtraction on the level of modes. ¿e
di�erence of the two approaches is given in (7.11) or, equivalently, (7.12). It is useful
to show directly that this regularization prescription indeed regularizes the two-point
distribution (8.6):

Proposition 8.1. ¿e regularized two-point distribution

ω2(τ, x⃗ − x⃗′) − lim
ε→0+

1(2π)3a(τ)2 ∫R3
( 1
2k0

− V(τ)
4k30

) eik⃗⋅(x⃗−x⃗′)e−εk dk⃗,
withω2 given by (8.6), converges in the coinciding point limit for all continuously di�erentiable
scale factors a.

Proof. We have to show that

lim
ε→0+∫R3

(∣χk ∣2 − 1
2k0

+ V
4k30

) e−εk dk⃗ = ∫
R3

(∣χk ∣2 − 1
2k0

+ V
4k30

) dk⃗ (8.8)

is �nite. To this end we expand the product ∣χk ∣2 with χk = ∑n χnk as

∣χk ∣2 = ∞∑
n=0

n∑
l=0 χ

l
k χ

n−l
k

in terms of the order n. Inserting this expansion into (8.8), we can prove the statement
order by order:

0th order. Since χ0k χ
0
k = (2k0)−1, the �rst term in the subtraction exactly cancels the

zeroth order term ∣χ0k ∣2 in (8.8).
1st order. Using an integration by parts, we can rewrite the �rst order terms as

(χ0k χ1k + χ1k χ0k)(τ) = 1
k20
∫ τ

τ0
sin (k0(η − τ)) cos (k0(η − τ))V(η)dη

= 1
2k20

∫ τ

τ0
sin (2k0(η − τ))V(η)dη

= −V(τ)
4k30

+ 1
4k30

∫ τ

τ0
cos (2k0(η − τ))V ′(η)dη.
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While the �rst summand V(τ)(4k30)−1 in the last line is exactly cancelled by the second
term in the subtraction in (8.8), the second summand yields

∫
R3

1
4k30

(∫ τ

τ0
cos (2k0(η − τ))V ′(η)dη) e−εk dk⃗

= π∫ ∞
0

k2

k30
(∫ τ

τ0
cos (2k0(η − τ))V ′(η)dη) e−εk dk

= π∫ ∞
a0m

k−10
√
1 − a2k−20 (∫ τ

τ0
cos (2k0(η − τ))V ′(η)dη) e−εk dk0

= π∫ τ

τ0
V ′(η) (∫ ∞

a0m
k−10 cos (2k0(η − τ)) e−εk dk0) dη − R(τ) (8.9)

for ε > 0. Here R is a �nite remainder term since it contains terms in the k0-integration
which decay at least like k−30 . Notice that, in the last equation of the previous formula,
thanks to the positivity of ε we have switched the order in which the k0- and η-integration
are taken. We would like to show that the weak limit ε → 0+ can be taken before the
η-integration in (8.9).

To this end it remains to be shown that the k0-integral in (8.9) converges in the limit
ε → 0+ to an integrable function in [τ0, τ]. First, note that the exponential integral

E1(x) = Γ(0, x) = ∫ ∞
1

e−xt
t

dt = ∫ 1

0

e−x
x − ln(1 − s) ds (8.10)

converges for x ≠ 0,Re x ≥ 0. To show the identity, we used the substitution

t = −x−1 ln(1 − s) + 1
involving a subtle but inconsequential change of the integration contour in the complex
plane if x is complex. ¿en we easily see that

lim
ε→0+∫

∞
a0m

k−10 e±2ik0(η−τ)−εk0 dk0 = E1(± 2ia0m(η − τ)) (8.11)

converges for η ≠ τ. ¿is result is related with (8.9) via

lim
ε→0+∫

∞
a0m

k−10 cos (2k0(η − τ)) e−εk dk0 = lim
ε→0+∫

∞
a0m

k−10 cos (2k0(η − τ)) e−εk0 dk0,
where we have used the boundedness of k − (k2 − a20m2)1/2 and (8.11). Finally, a bound
su�cient to see the η-integrability of the k0-integral in (8.9) can be obtained from the
identity in (8.10), namely,

∣E1(ix)∣ = ∣∫ 1

0
(ix − ln(1 − s))−1 ds∣ ≤ ∫ 1

0
(x2 + s2)−1/2 ds = ln( 1 +

√
1 + x2
x

).
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2nd order. For the second order we calculate

(χ0k χ2k + χ1k χ1k + χ2k χ0k)(τ)
= 1
k30
∫ τ

τ0
sin (k0(η − τ))V(η)

× (∫ η

τ0
sin (k0(ξ − η))V(ξ) cos (k0(ξ − τ))dξ

+ 1
2 ∫

τ

τ0
sin (k0(ξ − τ))V(ξ) cos (k0(ξ − η))dξ)dη

= 1
k30
∫ τ

τ0
sin (k0(η − τ))V(η) (∫ η

τ0
sin (k0(2ξ − η − τ))V(ξ)dξ) dη

= 1
2k40

∫ τ

τ0
sin (k0(η − τ))V(η)(∫ η

τ0
cos (k0(2ξ − η − τ))V ′(ξ)dξ

− cos (k0(η − τ))V(η))dη, (8.12)

where we have used integration by parts in the last equality. It is easy to obtain a k⃗-uniform
estimate for the integral above and thus the integrability of the second order follows from∫R3 k−40 dk⃗ <∞.

Higher orders. For orders n > 2 it is su�cient to use the rough estimate from (6.20):

∣ ∞∑
n=3

n∑
l=0 χ

l
k χ

n−l
k ∣(τ) ≤ 1

2k0

∞∑
n=3

2n

n!
( 1
k0 ∫

τ

τ0
∣V(η)∣dη)3 (∫ τ

τ0
(τ − η) ∣V(η)∣dη)n−3

≤ 4
k40

(∫ τ

τ0
∣V(η)∣dη)3 exp(2∫ τ

τ0
(τ − η) ∣V(η)∣dη) . (8.13)

As above, the integrability of the higher orders follows from ∫R3 k−40 dk⃗ <∞.
Note that none of the estimates above depends on higher derivatives of the scale factor.

¿erefore, combining these partial results, we see that the thesis holds true. ◻
It follows that we can consistently de�ne the renormalized Wick square of the state

given by (8.6) at conformal time τ for every FLRW spacetime with C1 scale factor

ω( ∶φ̂2 ∶) = 1(2π)3a2 ∫R3
(∣χk ∣2 − 1

2k0
+ V
4k30

) dk⃗

+ m2

(4π)2 ⎛⎝ 12 − ( a0
a(τ))

2 + 2 ln( a0
a(τ)) + 2 ln(eγmλ√

2
)⎞⎠ ,

(8.14)

which coincides with (8.7) for smooth spacetimes. Moreover, we notice that, as a con-
sequence of the previous proposition, it is possible to obtain global estimates for the
renormalized Wick square:

Proposition 8.2. ¿e renormalized Wick square is bounded on every a′ ∈ C[τ0, τ1] with
a > 0 in [τ0, τ1] for every τ1 and with a(τ0) = a0, namely,

∣ω( ∶φ̂2 ∶)(τ1)∣ ≤ C ⎛⎝ sup[τ0 ,τ1] a, sup[τ0 ,τ1] a
′, (τ1 − τ0), 1

inf[τ0 ,τ1] a
⎞⎠

where C is a �nite increasing function.
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Proof. ¿eproof of this proposition and the explicit value ofC, can be obtained combining
(8.7) with (7.12) and then analyzing the adiabatic subtraction (8.8) order by order as in the
proof of the preceding proposition. ◻
8.1.5 Adiabatic regularization of the energy density

¿ere is another nice feature about the states we have constructed above. ¿anks to the
conformal coupling of the scalar �eld with the curvature, the energy density computed in
these states is �nite even though these states are (on smooth spacetimes) only adiabatic
states of order zero. ¿is is a crucial feature which permits us to solve the constraint (8.3)
as a �rst step towards solving the semiclassical Einstein equation.

Proposition 8.3. ¿e energy density ρ in the state ω de�ned by (8.6) at the initial time
τ = τ0 is �nite.
Proof. Following [114], in order to show that ρ(τ0) is �nite, we just need to show that the
adiabatically regularized expression (see also (7.13) and the subsequent remark)

∫ ∞
0

((∣χ′k ∣2 + (k2 +m2a2)∣χk ∣2) − (∣W(0)
k

′∣2 + (k2 +m2a2)∣W(0)
k ∣2)) k2 dk (8.15)

does not diverge at τ = τ0. Evaluating the expression (8.15) at τ = τ0 gives
m4

8 ∫ ∞
0

a20 (a′)2(k2 +m2a20)5/2 k2 dk <∞. ◻
Notice that the previous proposition only guarantees that the energy density is well-de�ned
at the initial time. Nevertheless, the conservation equation for the stress-energy tensor
permits to state that it is well-de�ned everywhere.

¿e expression (8.15) coincides with the energy density ρ of the system up to a confor-
mal rescaling and up to the addition of some �nite terms. ¿us, since the energy density ρ
is �nite in the considered state, the constraint (8.3) holds, provided a suitable choice of
H(τ0) and Λ is made. We stress that, if we do not want to alter Λ, the same result can be
achieved adding classical radiation to the energy density of the universe in a suitable state.

We would like to conclude this section with a remark. In adiabatic states of order zero
the expectation values of local �elds containing derivatives are usually ill-de�ned. Despite
this, in the case of conformal coupling and for our choice of initial conditions (6.18), the
energy density turns out to be well-de�ned. ¿is is essentially due to the fact that in the
massless conformally coupled case the adiabatic modes of order zero are solutions of the
mode equation (6.10) and in that case the obtained state is the well known conformal
vacuum. Hence, the adiabatically regularized energy density vanishes. In the massive case
the states constructed above are not very di�erent than the conformal vacuum and, in
particular, the energy density remains �nite under that perturbation.

8.2 Local solutions

Our aim is to show the existence and uniqueness of local solutions to the semiclassical
Friedmann equation. In particular, according to the discussion in the introduction, we will
analyze the uniqueness and existence of solutions of (8.5). Similar to the Picard–Lindelöf
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theorem, we will use the Banach �xed-point theorem to achieve this goal. Some results
on functional derivatives and the Banach �xed-point theorem are collected in Chap. 3, in
particular Sect. 3.4.

Solving (8.5) is equivalent to �nding �xed-points of the functional F de�ned by

F(H)(τ) ≐ H0 + ∫ τ

τ0

a(η)
H2
c −H(η)2 (H(η)4 − 2H2

cH(η)2 − 15
2 m

4

+ 240π2(m2ω( ∶φ̂2 ∶)(H)(η) + 4Λ))dη, (8.16a)

≐ H0 + ∫ τ

τ0
f (H)(η)dη. (8.16b)

Since ω( ∶φ̂2 ∶)(H) is well-de�ned for continuous Hubble functions (see also (8.14)), we
select for the Banach space of candidate Hubble functions H the space1 C[τ0, τ1], τ0 < τ1,
equipped with the uniform norm

∥X∥C[τ0 ,τ1] ≐ ∥X∥∞ ≐ sup
τ∈[τ0 ,τ1]∣X(τ)∣.

However, once τ0 and the initial condition a0 = a(H)(τ0) > 0 are �xed, we �nd that
a(H)(τ) = a0 (1 − a0∫ τ

τ0
H(η)dη)−1 , (8.17)

as a functional of H, is not continuous on C[τ0, τ1]. But we can �nd an open subset
U[τ0, τ1] ≐ {H ∈ C[τ0, τ1] ∣ ∥H∥C[τ0 ,τ1] < min{a(τ0)−1(τ1 − τ0)−1,Hc}} (8.18)

on which a and thus also V = m2(a2 − a20) depend smoothly on H. Indeed, we can show
the following:

Proposition 8.4. ¿e functional

f (H) = a(H)
H2
c −H2 (H4 − 2H2

cH2 − 15
2 m

4 + 240π2(m2ω( ∶φ̂2 ∶)(H) + 4Λ)) (8.19)

is continuously di�erentiable on U[τ0, τ1] for arbitrary but �xed τ0, τ1 and a0 = a(τ0).
Proof. Given (8.7), (7.12), Prop. 8.1 and Prop. 8.2, it is enough to show that a(H) and(H2

c − H2)−1 are bounded and that ω( ∶φ̂2 ∶)(H)(τ0) is continuously di�erentiable. ¿e
former is assured by the condition ∥H∥C[τ0 ,τ1] < min{a−10 (τ1 − τ0)−1,Hc} in the de�nition
of U[τ0, τ1]. For the latter it remains to be shown that the renormalized Wick square
(8.14) is continuously di�erentiable on U[τ0, τ1]:

We start by calculating the functional derivative of the scale factor

da(H; δH)(τ) = a(H)(τ)2∫ τ

τ0
δH(η)dη.

¿e functional derivatives for a−2, ln a, V and V ′ follow easily. In particular we note that
all these functions are continuously di�erentiable on U[τ0, τ1] because integration is a
continuous operation and a depends smoothly on H in U[τ0, τ1]. ¿erefore it su�ces to
analyze the di�erentiability of the integral (8.8) appearing in the regularized two-point dis-
tribution. Moreover, within χk only the potential V is (smoothly on U[τ0, τ1]) dependent
on H, thus simplifying the computations considerably.2 Continuing with the regularized
two-point distribution order by order as in Prop. 8.1, we have:

1Until �xed, we take both τ0 and τ1 as variable and thus consider a family of Banach spaces.
2If we were to work in cosmological time as in [178], we would also have to consider the functional

dependence of conformal time on the scale factor.
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1st order. Since

d(χ0k χ1k + χ1k χ0k + V
4k30

)(H; δH)(τ)
= 1
4k30

∫ τ

τ0
cos (2k0(η − τ))dV ′(H; δH)(η)dη,

we can proceed with the proof as in Prop. 8.1 with V ′ replaced by dV ′ and di�erentiability
follows.

2nd order. As above, this part of the proof can be shown by replacing occurrences of V
and V ′ in (8.12) of Prop. 8.1 with dV and dV ′ respectively.
Higher orders. For orders n > 2 we can again use an estimate similar to (6.20) to obtain
a result analogous to (8.13):

∣d( ∞∑
n=3

n∑
l=0 χ

l
k χ

n−l
k )(H; δH)(τ)∣ ≤ 4

k40
(∫ τ

τ0
∣dV(H; δH)(η)∣dη)

× (∫ τ

τ0
∣V(η)∣dη)2 exp(2∫ τ

τ0
(τ − η) ∣V(η)∣dη) .

In this way we can conclude the proof of the present proposition. ◻
We can now formulate the main theorem of this chapter:

Theorem 8.5. Let (a0,H0), a0 > 0, ∣H0∣ < Hc , be some initial conditions �xed at τ0 for (8.5).
¿ere is a non-empty interval [τ0, τ1] and a closed subset U ⊂ C[τ0, τ1] on which a unique
solution to (8.5) exists.

Proof. In Prop. 8.4 we showed that f is continuously di�erentiable on U[τ0, τ1] for any
τ1. Using Prop. 3.11, we can thus �nd a τ1 > τ0 and a closed subset U ⊂ U[τ0, τ1] such that
F(U) ⊂ U . It then follows from Prop. 3.10 that F has a unique �xed point in U . ◻

Notice that the solution provided by the previous theorem is actually more regular,
it is at least di�erentiable. ¿us the corresponding spacetime is C2 and has well-de�ned
curvature tensors. ¿e extra regularity is provided by (8.5) and can be easily seen when
it is written in its di�erential form (8.4). It might be surprising that the solutions are not
smooth, since the procedure to �nd the solution involves repeated integration, but because
the chosen adiabatic state is only guaranteed to be continuous on every spacetime, H is
only C1. Using Cor. 3.6, one can see that a more regular state immediately improves also
the regularity of the solution.

8.3 Global solutions

In this section we would like to show that it is always possible to extend a ‘regular’ local
solution up to the point where either H2 becomes bigger than H2

c or a diverges.3 To this
end we start giving a de�nition we shall use below.

3H2 = H2
c corresponds to a singularity in the derivative of H in (8.4).
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De�nition 8.6. A continuous solution H∗ of (8.5) in the interval [τ0, τ1] with initial condi-
tions

a(H∗)(τ0) = a0, H∗(τ0)2 = H2
0 = 1

3
(ρ(τ0) + Λ)

will be called regular, if no singularity for either a, H∗ or H′∗ is encountered in [τ0, τ1].
Namely, H∗ must satisfy the following conditions:

1. ∥H∗(τ)∥C[τ0 ,τ1] < Hc ,

2. a0 ∫ τ
τ0 H∗(η)dη < 1 for every τ in [τ0, τ1].

We remark that a local solution obtained from¿m. 8.5 is a regular solution. Hence-
forth, assume that we have a regular solution H∗ as described in the de�nition. Notice
that condition a) ensures that no singularity in H′∗ is met in [τ0, τ1]. Condition b), on the
other hand, ensures that a does not diverge in the interval [τ0, τ1]. Moreover, both a) and
b) together imply that a is strictly positive, as can be seen from (8.17).

We would like to prove that a regular solution can always be extended in C[τ0, τ2] for
a su�ciently small τ2 − τ1 > 0. To this end, let us again consider the set

U[τ1, τ2] ≐ {H ∈ C[τ1, τ2] ∣ ∥H∥C[τ1 ,τ2] < min{a−11 (τ2 − τ1)−1,Hc}}
de�ned in (8.18) and where a1 ≐ a(H∗)(τ1) is the value assumed by the solution a(H∗) at
τ1. Now we can give a proposition similar to Prop. 8.4, namely:

Proposition 8.7. Let H∗ be a solution of (8.5) in C[τ0, τ1] which is also regular. ¿e func-
tional f (H) of (8.19), when evaluated on regular extensions of H∗ in U[τ1, τ2], is continu-
ously di�erentiable for arbitrary τ2 > τ1.
Proof. ¿e proof of this proposition can be obtained exactly as the proof of Prop. 8.4.
However, the estimates we have obtained in Prop. 8.2 and the proof of Prop. 8.4 cannot
be applied straightforwardly because the state ω depends on the initial time τ0 and the
initial datum a0 through the construction described in Sect. 6.2.4. Moreover, the estimates
of Prop. 8.2 depend on the knowledge of a and a′ on the whole interval [τ0, τ2]. Luckily
enough, we know that the solution H∗ is regular in [τ0, τ1], while we know that the
extension restricted to [τ1, τ2] is in the set U[τ1, τ2]; thus we just need to use the following
estimates

∥a∥C[τ0 ,τ2] = max{∥a∥C[τ1 ,τ2], ∥a∥C[τ0 ,τ1]},∥a∥−1C[τ0 ,τ2] = max{∥a∥−1[τ1 ,τ2], ∥a∥−1C[τ0 ,τ1]},∥a′∥C[τ0 ,τ2] = max{∥a′∥C[τ1 ,τ2], ∥a′∥C[τ0 ,τ1]}.
With this in mind, we can again use Prop. 8.2 to control the boundedness of ω( ∶φ̂2 ∶).
¿en, making the replacements τ0 → τ1, τ1 → τ2 and a0 → a1 at the appropriate places in
Prop. 8.4, one can see that estimates are not substantially in�uenced and that thesis still
holds for U[τ1, τ2]. ◻

Notice that it is always possible to �x τ2 such that a−11 (τ2 − τ1)−1 ≥ Hc , whereby
U[τ1, τ2] becomes the set of all possible regular extensions of H∗ in [τ1, τ2]. ¿is guaran-
tees that any extension in U[τ1, τ2] is the unique regular extension.

We are now ready to state the main theorem of the present section which can be proven
exactly as ¿m. 8.5.
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Theorem 8.8. Consider a solution H∗(τ) in C[τ0, τ1] of (8.5). If the solution is regular in[τ0, τ1], as de�ned in Def. 8.6, then it is possible to �nd a τ2 > τ1 such that, the solution H∗
can be extended uniquely to C[τ0, τ2] and the solution is regular therein.
Proof. ¿anks to Prop. 8.7, f is continuously di�erentiable on all regular extensions of
H∗ in U[τ1, τ2] for any τ2 such that a−11 (τ2 − τ1)−1 ≥ Hc . With the remarks of the proof of
Prop. 8.7 we can use Prop. 8.2 to estimate the boundedness of ω( ∶φ̂2 ∶) and apply Prop. 3.11
to �nd a τ2 > τ1 and a closed subset U ⊂ U[τ1, τ2] such that F(U) ⊂ U . It then follows
from Prop. 3.10 that F has a unique �xed point in U . ◻

We study now all possible solutions of (8.5) which are de�ned on intervals of the form[τ0, τ), which are regular on any closed interval contained in their domain and which
enjoy the same initial values a0 = a(τ0),H0 = H(τ0).
Proposition 8.9. Amaximal solutions exists; it is unique and regular.

Proof. Let S= {Iα ,Hα}α∈A, with A ⊂ N some index set, be the set of all possible regular
solutions Hα with domain Iα for the same initial values. By the existence of local solutions
S is not empty. We then take the union I = ⋃α∈A Iα and de�ne H(τ) = Hα(τ) for τ ∈ Iα ,
which is a well-de�ned regular solution by Prop. 8.7. Since every I is a superset of every Iα ,
H is the unique maximal regular solution. ◻

As for the solution provided by theorem 8.5, also the maximal solution obtained above
correspond to a metric with C2 regularity.

8.4 Numerical solutions

¿e �rst problem that one encounters when attempting to treat the semiclassical Einstein
equation in a numerical fashion, is the construction of states. Here, the mode equa-
tion (6.10), which describes an oscillator with a time-dependent ‘resonance frequency’
ω2k = k2 + a2m2, has to be solved. Standard numerical solvers, like the Runge–Kutta
method, rely on di�erentiation and their error scales like a (high-order) derivative of the
solution. However, each derivative of an oscillating function increases the amplitude by
a power of the frequency, thus ultimately leading to large errors for quickly oscillating
di�erential equations a er a short time span. ¿is problem can be partially counteracted by
choosing ever smaller step sizes in time, but eventually one will encounter a computational
barrier. Another possibility is to look for a non-standard approach to solve the mode
equation. Such methods replace di�erentiation with integration, but, since the numerical
integration of highly oscillatory functions is also a non-trivial problem, this is still an
active area of research, see for example [84, 131, 132, 143, 144].

One might say, that the large frequency behaviour of the modes is of no relevance
when solving the semiclassical Einstein equation because it involves the state only a er
regularization, i.e., a er the terms that contribute for large ωk have been subtracted. While
this response is, to some degree, certainly true, numerical errors in the solution before the
regularization and in the subtraction itself can still accumulate. ¿erefore, the issue of the
high frequency modes and their regularization has to be carefully addressed in a numeric
approach.



146 Chapter 8. Solutions of the semiclassical Einstein equation

Although the perturbative construction of the state used in this chapter (see also
Sect. 6.2.4), the functional (8.5) and the use of the Banach �xed-point theorem in the proof
of ¿m. 8.5 were not developed with a numerical application in mind, there are reasons
why they might be useful also for numerics: ¿e mode solution are found recursively
from (6.19), an integral equation which avoids the di�erentiation problem discussed above.
Moreover, as seen in Prop. 8.1, only the �rst two partial modes χ(0)k and χ(1)k are a�ected
by the regularization in a well-understood way, so that also the numerical di�culty in
the regularization can circumvented. Nevertheless, also this approach is not without
its problems as it involves repeated numerical integration of oscillating functions and
therefore it is very slow if naïvely implemented as a Riemann sum, because it requires
small time steps. ¿e other feature of the proof of existence that allows a translation to
numerics is the use of the Banach �xed-point theorem. Namely, we can be assured that an
iterated recursive application of (8.5) will converge to a solution, even though we do not
know how quickly convergence occurs.

8.5 Outlook

In this chapter we have studied the backreaction of a quantum massive scalar �eld confor-
mally coupled with gravity to cosmological spacetimes. We have given initial conditions at
�nite time τ = τ0 and we have shown that a unique maximal solution exists. ¿e maximal
solution either lasts forever or until a spacetime singularity is reached.

In order to obtain this result, we have used a state which looks as much as possible
like the vacuum at the initial time. Notice that it is possible to choose other classes of
states without signi�cantly altering the results obtained in this chapter. In particular, if
we restrict ourself to Gaussians pure state which are homogeneous and isotropic, their
two-point function takes the form

ω̃2(x , y) = lim
ε→0+

1(2π)3 ∫R3

ξk(τx)
a(τx)

ξk(τy)
a(τy) eik⃗⋅(x⃗− y⃗)e−εk dk⃗,

where ξk are solutions of (6.10) which enjoy the Wronskian condition (6.11). ¿ese χk can
then be written as a Bogoliubov transformation of the modes χk studied earlier in this
chapter, namely,

ξk = A(k)χk + B(k)χk
for suitable functions A and B. ¿en, because of the constraint ∣A∣2− ∣B∣2 = 1, the di�erence

ω̃( ∶φ̂2 ∶) − ω( ∶φ̂2 ∶) = lim
ε→0+

1(2π)3 2a2 ∫R3
(∣B∣2χk χk + Re (ABχk χk)) e−εk dk⃗

can be easily controlled employing (6.20) if ∣B∣ is su�ciently regular (e.g., if B(k) is in
L2 ∩ L1).4 With this observation it is possible to obtain again all the estimates used in the
proofs of ¿ms. 8.5 and 8.8.

In the future, it would be desirable to study the semiclassical equations in more
general cases, namely for more general �elds, abandoning for example the conformal
coupling, and for more general background geometries. ¿e results presented here cannot
straightforwardly be extended to �elds which are not conformally coupled to curvature or

4A detailed analysis of this problem is present in [221].
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to spacetimes that are not conformally �at because in that case fourth order derivatives
of the metric originating in the conformal anomaly cannot be cancelled by a judicious
choice of renormalization parameters, i.e., Wald’s � h axiom [218] cannot be satis�ed. To
still solve the semiclassical Einstein equation with methods similar to those presented
here, a deeper analysis of the states is required, in particular, one needs states of higher
regularity. A preliminary study in this direction can be found in a paper of Eltzner and
Gottschalk [83], where the semiclassical Einstein equation on a FLRW background with
non-conformally coupled scalar �eld is discussed. ¿e case of backgrounds which are
only spherically symmetric is interesting from many perspectives. Its analysis could give
new hints on the problem of semiclassical black hole evaporation and con�rm the nice
two-dimensional results obtained in [19]. Finally, the limit of validity of the employed
equation needs to be carefully addressed in the future.





9
Induced semiclassical �uctuations

Introduction

As described in Chap. 7, in semiclassical Einstein gravity one equates a classical quantity,
the Einstein tensor, with the expectation value of a quantum observable, the quantum
stress-energy tensor, i.e., a quantity with a probabilistic interpretation. Such a system
could make sense only when the �uctuations of the quantum stress-energy tensor can be
neglected. Unfortunately, as also noticed in [178], the variance of quantum unsmeared
stress-energy tensor is always divergent even when proper regularization methods are
considered. ¿e situation is slightly better when a smeared stress-energy tensor is analyzed.
In that way, however, the covariance of (7.1) gets lost. A possible way out is to allow for
�uctuations also on the le -hand side of (7.1). ¿is is the point of view we shall assume
within this chapter, which is based on an article [4] in collaboration with Pinamonti.

More precisely, we interpret the Einstein tensor as a stochastic �eld and equate its
n-point distributions with the symmetrized n-point distributions of the quantum stress-
energy tensor. As an application of this (toy) model, we analyze the metric �uctuations
induced by a massive, conformally coupled scalar �eld via the (quantum) stress-energy
tensor in the simplest non-trivial spacetime – de Sitter spacetime. We �nd that the potential
in a Newtonianly perturbed FLRW spacetime has a almost scale-invariant power spectrum.

¿ese results encourage a comparison with the observation of anisotropies in the
cosmic microwave background and their theoretical explanations. Anisotropies in the
angular temperature distribution were predicted by Sachs and Wolfe [188] shortly a er
the discovery of the cosmic microwave background (CMB) by Penzias and Wilson [174].
In their famous paper they discuss what was later coined the Sachs–Wolfe e�ect: ¿e
redshi in the microwave radiation caused by �uctuations in the gravitational �eld and
the corresponding matter density �uctuations. In the standard model of in�ationary
cosmology the �uctuations imprinted upon the CMB are seeded by quantum �uctuations
during in�ation [161, 162], see also the reviews in [76, 80].

¿e usual computation of the power spectrum of the initial �uctuations produced
by single-�eld in�ation can be sketched as follows [26, 76, 80]: First, one introduces a
(perturbed) classical scalar �eld φ+δφ, the in�aton �eld, which is coupled to a (perturbed)
expanding spacetime g + δg. ¿en, taking the Einstein equation and the Klein–Gordon
equation at �rst order in the perturbation variables, one constructs an equation of motion
for theMukhanov–Sasaki variable Q = δφ + φ̇ H−1Φ, where Φ is the Bardeen potential
[25] andH the Hubble constant. Q is then quantized1 (in the slow-roll approximation) and
one chooses as the state of the associated quantum �eld a Bunch–Davies-like state. Last,
one evaluates the power spectrum PQ(k) of Q, i.e., the Fourier-transformed two-point
distribution of the quantum state, in the super-Hubble regime k ≪ aH and obtains an

1A recent discussion about the quantization of a such system can be found in [81].
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expression of the form2

PQ(k) = AQ

k3
( k
k0

)ns−1 , (9.1)

where AQ is the amplitude of the �uctuations, k0 a pivot scale and ns the spectral index.
Notice the factor of k−3 in (9.1) which gives the spectrum the ‘scale-invariant’ Harrison–
Zel’dovich form if ns = 1. Depending on the details of model, ns ≲ 1 and there is also a
possibility for a scale dependence of ns – the ‘running’ of the spectral index ns = ns(k).

¿is result can then be related to the power spectrum of the comoving curvature
perturbationR, which is proportional to Q, and can be compared with observational data.
Assuming adiabatic and Gaussian initial perturbations, the WMAP collaboration �nds
ns = 0.9608 ± 0.0080 (at k0 = 0.002Mpc−1) in a model without running spectral index
and gravitational waves, excluding a scale-invariant spectrum at 5σ [121]. Furthermore,
the data of WMAP and other experiments can be used to constrain the deviations from a
pure Gaussian spectrum, the so called non-Gaussianities, that arise in some in�ationary
models [26, 33, 150].

In [7–9, 170] concerns have been raised whether the calculation leading to (9.1) and
similar calculations are correct: ¿e authors argue that the two-point distribution of the
curvature �uctuations has to be regularized and renormalized similarly to what is done in
semiclassical gravity. As a result the power spectrum is changed su�ciently that previously
observationally excluded in�ation models become realistic again. On the contrary the
authors of [77, 153] argue that the adiabatic regularization employed in [7–9, 170] is not
appropriate for low momentum modes if evaluated at the Horizon crossing and irrelevant
for these modes if evaluated at the end of in�ation.

A slightly di�erent approach to the calculation of the power spectrum based on stochas-
tic gravity can be found in [129, 184, 185]. In spirit similar to the approach presented in this
chapter, the authors equate �uctuations of the stress-energy tensor with the correlation
function of the Bardeen potential. In the super-Hubble regime they obtain an almost
scale-invariant power spectrum. Moreover, they discuss the equivalence of their stochastic
gravity approach with the usual approach of quantizing metric perturbations.

Our approach here is strictly di�erent from the standard one described above. Instead
of quantizing a coupled system of linear in�aton and gravitational perturbations, we aim
at extending the semiclassical Einstein equation to describe metric �uctuations via the
�uctuations in the stress-energy tensor of a quantum �eld.

9.1 Fluctuations of the Einstein tensor

Consider now the Einstein tensor as a random �eld. ¿en we could imagine to equate
the probability distribution of the Einstein tensor with the probability distribution of the
stress-energy tensor. ¿is suggestion, however, seems largely void without a possibility of
actually computing the probability distributions of the stress-energy tensor because, as
discussed above, its moments of order larger than one are divergent.

2An alternative de�nition of the power spectrum isPQ(k) = (2π)−2k3PQ(k).
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Instead we may approach this idea by equating the hierarchy of n-point distributions
of the Einstein tensor with that of the stress-energy tensor:

⟨Gab(x1)⟩ = ω( ∶Tab(x1)∶), (9.2a)
⟨δGab(x1) δGc′d′(x2)⟩ = 1

2ω( ∶δTab(x1)∶ ∶δTc′d′(x2)∶ + ∶δTc′d′(x2)∶ ∶δTab(x1)∶),
(9.2b)

and

⟨δG⊠n⟩ = ω( Sym( ∶δT ∶⊠n)), n > 1, (9.2c)

where ω is a Hadamard state and we de�ned

δGab ≐ Gab − ⟨Gab⟩ and ∶δTab ∶ ≐ ∶Tab ∶ − ω( ∶Tab ∶).
¿e symmetrization on the right-hand side is necessary because the classical quantity on
le -hand side is invariant under permutation.

We emphasize that we are equating singular objects in (9.2c). Having all the n-point
distributions of the Einstein stochastic tensor, we can easily construct an equation for the
moments of the smeared Einstein tensor which equals the moments of a smeared stress-
energy tensor by smearing both sides of (9.2) with tensor products of a smooth compactly
supported function. ¿is smearing also automatically accounts for the symmetrization
in (9.2).

Furthermore we stress that equating moments, obtained smearing both side of (9.2),
is not equivalent to equating probability distributions. Although it is also possible to
arrive at a description in terms of moments when coming from a probability distribution,
the inverse mapping is not necessarily well-de�ned. Successful attempts to construct a
probability distribution for smeared stress-energy tensors can be found in [90, 91].

Consider now a quasi-free Hadamard state ω of a conformally coupled scalar �eld φ
on a spacetime (M , g), the background spacetime. Our aim is to calculate the perturbation
of the background spacetime as speci�ed by the correlation functions on the le -hand side
of (9.2) due to the �uctuations of the stress-energy in the quantum state ω as speci�ed on
the right-hand side of (9.2). In particular we will require that ω satis�es (9.2a) when we
identify the Einstein tensor of the background spacetime Gab with ⟨Gab⟩ (cf. Chap. 8 for a
discussion of the solutions of the semiclassical Einstein equation in cosmological space-
times). Note that by choosing this Ansatz we are completely ignoring any backreaction
e�ects of the �uctuations to the background metric and evaluate the stress-energy tensor
on a state speci�ed on the background spacetime.

Later on we consider perturbations of the scalar curvature induced by a ‘Newtonianly’
perturbed FLRWmetric. For this reason it will be su�cient to work with the trace of (9.2)
(using the background metric) instead of the full equations. With the de�nition

S ≐ −gabGab ,

such that R = ⟨S⟩, the equations (9.2) simplify to
⟨S(x1)⟩ = m2

8π2
[w] − 1

4π2
[v1] + ren. freedom, (9.3a)

⟨S(x1) S(x2)⟩ − ⟨S(x1)⟩⟨S(x2)⟩ = m4(ω22(x1, x2) + ω22(x2, x1)), (9.3b)
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Figure 9.1. A few graphs illustrating (9.3c) for n = 2, n = 3 and n = 5.
and

⟨(S − ⟨S⟩)⊠n(x1, . . . , xn)⟩ = 2nm2n Sym(∑
Γ
∏
i , j

ω
λΓi j
2 (xi , x j)
λΓi j!

), (9.3c)

where the sum is over all directed graphs Γ with n vertices 1, . . . , n with two arrows at
every vertex directed to a vertex with a larger label. λΓi j ∈ {0, 1, 2} is the number of arrows
from i to j. If we perform the symmetrization in (9.3c), we see that the sum is over all
acyclical directed graphs with two arrows at every vertex. For illustration some graphs are
shown in Fig. 9.1.

To obtain (9.3b) and (9.3c), note that ∶φ̂2 ∶ −ω( ∶φ̂2 ∶) does not depend on the choice of
normal ordering3 and thus only (9.3a) needs to be renormalized. ¿erefore we may choose
normal ordering with respect to ω2 to see that the combinatorics are equivalent to those
in Minkowski space. Moreover, as ω2 is a bisolution of the Klein–Gordon equation, the
term 1

3 ∶φ̂Pφ̂ ∶ which causes the trace anomaly in (9.3a) (cf. Sect. 7.2.4) does not contribute
to the higher moments.

9.2 Fluctuations around a de Sitter spacetime

We shall now specialize the general discussion presented above to Newtonianly perturbed,
exponentially expanding, �at FLRW universes. ¿at is, the background spacetime (M , g)
is given in conformal time τ < 0 by the metric tensor

g ≐ (Hτ)−2(−dτ ⊗ dτ + δi j dx i ⊗ dx j)
and we consider �uctuations of the scalar curvature derived from metric perturbations of
the form

g ≐ (Hτ)−2( − (1 + 2Φ)dτ ⊗ dτ + (1 − 2Φ) δi j dx i ⊗ dx j). (9.4)

3Indeed this holds true if we replace φ2 with Lφ2 , for any linear operator L.
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¿e kind of �uctuations that we consider by choosing (9.4) resemble those that are
present in single-scalar �eld in�ation in the longitudinal gauge, where there are only ‘scalar
�uctuations’ without anisotropic stress (so that the two Bardeen potentials coincide) [80,
162]. Notice that, for classical metric perturbation, these constraints descend from the
linearized Einstein equation, however, a priori there is no similar constraint in (9.2b).
Despite these facts, we proceed analyzing the in�uence of quantum matter on this special
kind of metric perturbations and we also refrain from discussing the gauge problem
associated to choosing a perturbed spactime; the chosen perturbation potential Φ is not
gauge invariant.

We can now calculate the various perturbed curvature tensors and obtain in particular

S = 12H2(1 − 3Φ) + 24H2τ∂τΦ − 6H2τ2∂2τΦ + 2H2τ2 ∇⃗2Φ + O(Φ2)
for the trace of the perturbed Einstein tensor, where ∇⃗2 = ∂2x1 + ∂2x2 + ∂2x3 is the ordinary
Laplace operator. Dropping terms of higher than linear order, this can also be written as

S − ⟨S⟩ = −6H2τ4(∂τ − 1
3 ∇⃗2)τ−2Φ, (9.5)

where ⟨S⟩ = 12H2 is nothing but the scalar curvature of the background spacetime. Notice
that, up to a rescaling, the operator on the right-hand side of (9.5) looks like a wave
operator with the characteristic velocity equal to 1/√3 of the velocity of light.

We can now evaluate the in�uence of quantummatter �uctuations on the metric �uctu-
ations by inverting the previous hyperbolic operator by means of its retarded fundamental
solutions ∆ret and applying it on both sides of (9.3b) and (9.3c). From (9.3b) we can then
(formally) obtain the two-point correlation functions of Φ (per de�nition ⟨Φ⟩ = 0):

⟨Φ(x1)Φ(x2)⟩ = m4∬
R8
∆ret(x1, y1)∆ret(x2, y2)(ω22(y1, y2)

+ ω22(y2, y1))d4y1 d4y2. (9.6)

Employing the retarded fundamental solutions in the inversionwithout adding any solution
of (9.5), we are implicitly assuming that all the n-point distributions of the perturbation
potential Φ are sourced by quantum �uctuations. Here we are only interested in evaluating
their e�ect.

9.2.1 The squared two-point distribution

In order to proceed with our analysis, we shall specify the quantum state ω for the matter
theory. Following the Ansatz discussed in the preceding section, we choose a quasi-free
Hadamard state which satis�es the semiclassical Einstein equation on the background. In
particular, we require that ω solves (9.3a), namely

12H2 = m2

8π2
[w] − 1

4π2
[v1] + 4c1m4 − c2m2R

¿e right-hand side of the previous equation is characterized by three contributions: ¿e
state dependent part [w], the anomaly part [v1], which takes the simple form (cf. Eq. (7.9))

[v1] = −H4

60
+ m4

8
,
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and the renormalization freedom c1m4 and c2m2R. Here we set c2 = 0, because we assume
the point of view that we have already measured Newton’s gravitational constant and do
not wish to renormalize it (cf. Sect. 7.2.3). ¿at is, we have

12H2 = m2

8π2
[w] + 1

8π2
(H4

15
− m4

2
) + 4c1m4.

For the semiclassical Einstein equation to hold, we therefore have to require that [w] is a
constant. ¿en, having �xed H and m (no matter their absolute value), there is always a
choice of c1 for which the chosenmetric g and ω satisfy the semiclassical Einstein equation.
On a de Sitter spacetime these criteria are satis�ed by the Bunch–Davis state, cf. Sect. 6.2.1.

In order to evaluate the in�uence of the quantum matter �uctuations on Φ via equa-
tion (9.6), we have to discuss the form of the two-point distribution of the chosen state and
its square. Any Hadamard state on (M , g) can be written is equal to the Bunch–Davies
state up to smooth terms. In particular, the two-point distribution ω2 of every Hadamard
state on de Sitter spacetime is of the form

ω2(x , x′) = lim
ε→0+

H2

4π2
ττ′(x − x′)2 + 2iε(τ − τ′) + ε2 + less singular terms, (9.7)

where we write (x − x′)2 ≐ −(τ− τ′)2 + (x⃗ − x⃗′)2 and, as always, the limit ε → 0+ is a weak
limit. It is no surprise that the leading singularity is conformally related to the two-point
distribution of a massless scalar �eld on Minkowski spacetime, we denote it by ωM. ¿us
it is also clear that the less singular contributions vanish in the limit of zero mass.

As can be seen in (9.3b), we need to compute the square of the two-point distribution
of the state in question. For our purposes it will be su�cient to compute the square of
the leading singularity in the Hadamard state.4 ¿e square of the massless two-point
distribution on Minkowski space is

ωM(x , x′)2 = lim
ε→0+ ( 1

4π2
1(x − x′)2 + 2iε(τ − τ′) + ε2)

2

.

Writing ωM in terms of its spatial Fourier transform, an expression for the spatial Fourier
transform of the square of the massless Minkowski vacuum can be obtained as

ωM(x , x′)2 = lim
ε→0+

1
128π5 ∫R3

eik⃗⋅(x⃗−x⃗′)∫ ∞
k

e−ip(τ−τ′)e−εp dpdk⃗. (9.8)

Later on we will use this expression in order to obtain the power spectrum of Φ.

9.2.2 Power spectrum of the metric perturbations

We want to compute the power spectrum P(τ, k⃗) of the two-point correlation of Φ at
the time τ. Since both the spacetime and the chosen state are invariant under spatial
translation, it can be de�ned as

⟨Φ(τ, x⃗)Φ(τ, x⃗′)⟩ ≐ 1(2π)3 ∫R3
P(τ, k⃗) eik⃗⋅(x⃗−x⃗′) dk⃗.

4Note that, in (spatial) momentum space, the leading singularity in (9.7) contributes the smallest inverse
power of the momentum k⃗; the ‘less singular terms’ correspond to higher inverse powers of k⃗. Accordingly,
these terms fall o� faster for large k⃗. ¿is is nothing but the usual relation ship between high momenta and
short distances.



9.2. Fluctuations around a de Sitter spacetime 155

To obtain P, we �rst need an expression for the retarded operator ∆ret corresponding
to (9.5):

(∆ret f )(τ, x⃗) = 1(2π)3 ∫R3 ∫ τ

−∞ ∆̂ret(τ, τ1, k⃗) f̂ (τ1, k⃗)eik⃗⋅x⃗ dτ1 dk⃗, with

∆̂ret(τ, τ1, k⃗) ≐ − 1
6H2

τ2

τ41

√
3
k
sin (k (τ − τ1)/√3) ,

where f is a compactly supported smooth function. We can then rewrite (9.6) in Fourier
space to obtain

P(τ, k⃗) = 2m4∫ τ

−∞∫
τ

−∞ ∆̂ret(τ, τ, k⃗)∆̂ret(τ, τ′, k⃗)ω̂2BD(τ, τ′, k⃗)dτ dτ′.
Note that the symmetrization of the state is taken care of indirectly by the equal limits of
the two integrations.

As discussed above (see (9.7) and the following paragraph), we will compute the
contribution due to the leading singularity of the Hadamard state:

P0(τ, k⃗) ≐ 2H4m4∫ τ

−∞∫
τ

−∞ ∆̂ret(τ, τ, k⃗) ∆̂ret(τ, τ′, k⃗) τ2τ′2ω̂2M(τ1, τ′, k⃗)dτ dτ′.
We emphasize at this point that, because of the form of (9.8) and of ∆̂ret, no infrared (with
respect to k⃗) singularity appears in P0(τ, k⃗) at �nite τ. Recall also that the error we are
committing, using P0(τ, k⃗) at the place of P(τ, k⃗), tends to vanish in the limit of small
masses. Inserting the spectrum of ω2M obtained in (9.8) and switching the order in which
the integrals are taken (for ε > 0), we can write

P0(τ, k⃗) = lim
ε→0+

m4

16π2 ∫
∞

k

1
k4

∣A(τ, k/√3, p)∣2e−εp dp, (9.9)

where we have introduced the auxiliary function

A(τ, κ, p) ≐ ∫ τ

−∞
κ τ2

τ21
sin (κ (τ − τ1)) e−ipτ1 dτ1, (9.10)

which can also be written in closed form in terms of the generalized exponential integral5

E2 as

A(τ, κ, p) = A(κτ, pτ) = i
2
κτ (E2(i (p + κ) τ) eiκτ − E2(i (p − κ) τ) e−iκτ)

for p ≥ κ > 0 and by the complex conjugate of this expression if κ > p, κ > 0. In the
following study of the form of the power spectrum P0 the auxiliary function A will be
instrumental.

Lemma 9.1. For ∣p∣ ≠ κ > 0, A(τ, κ, p) has the τ-uniform bound

∣A∣ ≤ 4 κ2∣κ2 − p2∣ . (9.11)

For large negative times it satis�es the limit

lim
τ→−∞∣A∣ = κ2∣κ2 − p2∣ . (9.12)

5For a de�nition and various properties of these special functions see e.g. [166, Chap. 8].
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Proof. Using the fact that

e−ipτ1 = ( d2

dτ12
+ κ2) e−ipτ1

κ2 − p2 ,
we can perform two integrations by parts to obtain

A(τ, κ, p) = κ2

κ2 − p2 (e−ipτ + R(τ, κ, p)), with

R(τ, κ, p) ≐ τ2∫ τ

−∞ ( 4
τ31
cos (κ (τ − τ1)) + 6

κτ41
sin (κ (τ − τ1))) e−ipτ1 dτ1.

It is now easy to obtain an upper bound for R which is uniform in conformal time, namely∣R∣ ≤ 3, which then yields the bound (9.11).
For the second part of the proposition we perform a change of the integration variable

to x = τ1/τ:
R(τ, κ, p) = −∫ ∞

1
( 4
x3

cos (κτ (1 − x)) + 6
κ τ x4

sin (κτ (1 − x))) e−ipτx dx .
¿e contribution proportional to 1/τ in R is bounded by C(κ)/∣τ∣ and thus vanishes in
the limit τ → −∞. Moreover, since ∣p∣ ≠ κ and 1/x3 is L1 on [1,∞), we can apply the
Riemann–Lebesgue lemma and see that this contribution vanishes in the limit τ → −∞.
¿e remaining part of ∣A∣ is κ2∣κ2 − p2∣−1, which is independent of τ, and thus the limit
(9.12) holds true. ◻

Note that the bound for A obtained above is not optimal. Numerical integration
indicates that ∣A∣2 is monotonically decreasing in τ and thus bounded by the limit stated
in (9.12) (see also Fig. 9.2). Nevertheless, we can use this lemma to derive the following
bounds and limits for P0:

Proposition 9.2. ¿e leading contribution P0 to the power spectrum of the potential Φ
induced by a conformally coupled massive scalar �eld in the Bunch–Davis state is bounded
by the Harrison–Zel’dovich spectrum uniformly in time, namely

∣P0(τ, k⃗)∣ ≤ 16C∣k⃗∣3 , C ≐ 3 − 2√3 arccoth
√
3

192π2
m4,

and it tends to the Harrison–Zel’dovich spectrum for τ → −∞, i.e.,

lim
τ→−∞ P0(τ, k⃗) = C∣k⃗∣3 .

Proof. ¿e proof can be easily obtained using the τ-uniform estimate (9.11) obtained in
Lem. 9.1 and computing the integral

∣P0(τ, k⃗)∣ ≤ m4

π2 ∫
∞

k
( 1
3p2 − k2)

2

dp = 3 − 2√3 arccoth
√
3

12π2
m4

k3
.

Having shown the �rst part of the proposition, let us now analyze the limit

lim
τ→−∞ P0(τ, k⃗) = m4

16π2 ∫
∞

k

1
k4

lim
τ→−∞∣A(τ, k/√3, p)∣2 dp,
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where we have taken the τ-limit before the integral and already evaluated the ε-limit
because ∣A∣2 is bounded by an integrable function uniformly in time. Inserting the limit
(9.12) from Lem. 9.1, we can compute the p-integral

lim
τ→−∞ P0(τ, k⃗) = m4

16π2 ∫
∞

k
(3p2 − k2)−2 dp = 3 − 2√3 arccoth

√
3

192π2
m4

k3
,

thus concluding the proof. ◻
We can complement the results of Prop. 9.2 with the following observation:

Proposition 9.3. ¿e power spectrum P0 has the form

P0(τ, k⃗) = P0(∣k⃗∣τ)∣k⃗∣3 ,

whereP0 is a function of ∣k⃗∣τ only.
Proof. Noting that A(τ, κ, p) is a function of κ τ and p τ only and performing the ε-limit
in (9.9) inside the integral, this can be seen by the substitution x = p τ in (9.9). ◻

We would like to improve the estimate of P0(τ, k⃗) for τ close to zero. Adhering to our
previous strategy, we shall �rst give a new estimate for A(τ, k, p):
Lemma 9.4. ¿e auxiliary function A(τ, κ, p) is bounded by

∣A(τ, κ, p)∣ ≤ −2 κ2 τ∣p∣ , p ≠ 0, τ < 0.
Proof. Recalling the form of A given in (9.10) and integrating by parts, where we use that
e−ipτ1 = i p−1 ∂τ1e−ipτ1 , we �nd

A(τ, κ, p) = iκ2τ2

p ∫ τ

−∞ ( 1
τ21
cos (κ (τ − τ1)) + 2

κτ31
sin (κ (τ − τ1))) e−ipτ1 dτ1.

We then take the absolute value and estimate the trigonometric functions, which gives us
a bound on A, namely

∣A(τ, κ, p)∣ ≤ κ2τ2∣p∣ ∫
τ

−∞ ( 1
τ21
− 2 τ − τ1

τ31
) dτ1 = −2 κ2τ∣p∣ . ◻

Performing the integration in p analogously to the second part of proposition (9.2),
the last lemma immediately leads to a corresponding bound for P0:

Proposition 9.5. ¿e leading contribution P0 of the power spectrum of the potential Φ
satis�es the inequality

∣P0(τ, k⃗)∣ ≤ m4

36π2
τ2∣k⃗∣

and therefore, in particular, P0(0, k⃗) = 0.
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Figure 9.2. Logarithmic plot of the rescaled power spectrumP0(∣k⃗∣τ), where C is the
same proportionality constant as in Prop. 9.2.

¿e rescaled power spectrum P0(∣k⃗∣τ) can be analyzed numerically and a plot is
shown in Fig. 9.2. It clearly exhibits the asymptotic behaviour of P0 discussed in Props. 9.2
and 9.5. Note that the horizontal axis is logarithmically scaled to highlight the behavior of
P0 for small ∣k⃗∣τ, which would be concealed by the fast approach ofP0 to its bound had
we used a linear scaling.

In this section we have used the leading singularity6 of the two-point function of the
Bunch–Davis state on a de Sitter universe to compute the in�uence of quantum matter
on the power spectrum of the metric perturbation Φ. We have seen that this results in an
almost scale-invariant power spectrum. We stress that such a singularity is not a special
feature of the Bunch–Davis state but is common for every Hadamard state. Moreover,
although our analysis has been done on a de Sitter universe, similar quantum states have
been constructed on universes which are asymptotically de Sitter spaces in the past [61,
62]. All these states tend to the Bunch–Davis state for τ → −∞ and are of Hadamard form.

9.2.3 Non-Gaussianities of the metric perturbations

It follows from (9.3c) that the n-point correlation for Φ will, in general, not vanish. Also
for odd n they will be di�erent from zero and hence Φ is not a Gaussian random �eld. As a
�rst measure of the non-Gaussianity of Φ one usually calculates its three-point correlation
function or the corresponding bispectrum B:

⟨Φ(τ, x⃗1)Φ(τ, x⃗2)Φ(τ, x⃗3)⟩ ≐ 1(2π)9 ∭R9
δ(k⃗1 + k⃗2 + k⃗3)B(τ, k⃗1, k⃗2, k⃗3)

× ei (k⃗1 ⋅x⃗1+k⃗2 ⋅x⃗2+k⃗3 ⋅x⃗3) dk⃗1 dk⃗2 dk⃗3.
Assuming nonzero k⃗1, k⃗2 and k⃗3, we will derive the form of the bispectrum B consider-

ing (as above) only the contribution due to the leading singularity of the Bunch–Davis state,

6Recall that considering only the leading singularity in the Bunch–Davis state also corresponds to the
limit of vanishing mass.
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which we will denote by B0. We will follow the same steps that lead us to the calculation of
the power spectrum in the previous section. ¿at is, we apply the retarded propagator ∆ret
of (9.5) as in (9.6) to the right-hand side of (9.3c) for n = 3 to obtain an equation for Φ
and insert for the two-point distribution the conformally rescaled two-point distribution
of the massless Minkowski vacuum. ¿e result can again be expressed in terms of the
auxiliary function A de�ned in (9.10):

B0(τ, k⃗1, k⃗2, k⃗3) = lim
ε→0+

m6

32
√
3k⃗21 k⃗22 k⃗23

∫
R3

⎛⎝e
−ε(ω p⃗(−k⃗1)+ω p⃗(k⃗3)+∣p⃗∣)
ω p⃗(−k⃗1)ω p⃗(k⃗3)∣p⃗∣

× A(τ, κ1,ω p⃗(−k⃗1) + ∣p⃗∣)A(τ, κ3,−ω p⃗(k⃗3) − ∣p⃗∣)
× A(τ, κ2,ω p⃗(k⃗3) − ω p⃗(−k⃗1)) + permutations⎞⎠dp⃗,

(9.13)

where κi ≐ ∣k⃗i ∣/√3, ω p⃗(k⃗) ≐ ∣k⃗ + p⃗∣ and the sum is over all permutations of 1, 2, 3.
We can apply the same bound on A which has been used in the previous section

to bound the power spectrum P0 to produce a bound on the integrand of B0 almost
everywhere.7 Nevertheless, the singularity in the integrand in (9.13) is integrable, i.e., B0
is bounded. As a consequence we can perform the limit ε → 0+ inside the integral.
Proposition 9.6. ¿e leading contribution B0 of the bispectrum of the metric perturbation
Φ has the form

B0(τ, k⃗1, k⃗2, k⃗3) = B0(k1τ, k2τ, k3τ)
k21 k22 k23

,

whereB0 is a function of k1τ, k2τ, and k3τ only and ki = ∣k⃗i ∣.
Proof. Analogously to Prop. 9.3, we note that a er a change of variables x⃗ = τ p⃗ the
integrand in (9.13) is a function of k1τ, k2τ, and k3τ only. ◻

To �nish our discussion about non-Gaussianities, we notice that, although the em-
ployed quantum �eld is a linear one, we obtained a three-point function for Φ which is
similar to the one obtained by Maldacena [150] who has quantized metric perturbations
outside the linear approximation.

9.3 Outlook

In this chapter the in�uence of quantum matter �uctuations on metric perturbations over
de Sitter backgrounds were analyzed. We used techniques proper of quantum �eld theory
on curved spacetime to regularize the stress-energy tensor and to compute its �uctuations.
In particular, we interpreted the perturbations of the curvature tensors as the realization of
a stochastic �eld. We then obtained the n-point distributions of such a stochastic �eld as
induced by the n-point distributions of a quantum stress tensor by means of semiclassical
Einstein equations.

7We cannot bound the integrand of B0 everywhere using (9.11) because ∣k⃗2 ∣/√3 ≠ ∣ω p⃗(k⃗3) − ω p⃗(−k⃗1)∣
(and permutations) does not hold everywhere.
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We also noticed that, while the expectation value of the stress-energy tensor is charac-
terized by renormalization ambiguities, this is no longer the case when �uctuations are
considered. Hence the obtained results are independent on the particular regularization
used to de�ne the stress tensor.

In order to keep super�cial contact with literature on in�ation, we investigated pertur-
bations of the scalar curvature generated by a Newtonian metric perturbation, which is
related to the standard Bardeen potentials. However, the considered model is certainly
oversimpli�ed to cover any real situation and is not gauge invariant.

Within this model it was possible to recover an almost-Harrison–Zel’dovich power
spectrum for the considered metric perturbation. Furthermore, the amplitude of such a
power spectrum depends on the �eld mass which is a free parameter in our model and can
be �xed independently of H. At the same time, since it does not depend on the Hubble
parameter of the background metric, this indicates that it is not a special feature of de
Sitter space. At least close to the initial singularity, the obtained result depends only on the
form of the most singular part of the two-point function of the considered Bunch–Davis
state. We thus argue that a similar feature is present in every Hadamard state and for
backgrounds which are only asymptotically de Sitter in the past.

Finally we notice that, since the stress-energy tensor is not linear in the �eld, its proba-
bility distribution cannot be of Gaussian nature. ¿us we showed that non-Gaussianities
arise naturally in this picture.



Conclusions

In this thesis aspects of the backreaction of quantum matter �elds on the curvature of
spacetime were discussed. ¿e main results in this direction were discussed in Chaps. 8
and 9: the existence of local and global solutions of the semiclassical Einstein equation on
cosmological spacetimes, and the a coupling the �uctuations of the quantummatter �eld to
aNewtonianly perturbed de Sitter spacetime. Further results presented are the enumerative
combinatorics of the run structure of permutations in Chap. 4 with applications to the
moment problem of the Wick square and the stress-energy on Minkowski spacetime.

In each case the problems were not treated in all possible generality, mainly due to
the di�culty of constructing Hadamard states on general globally hyperbolic spacetimes
but also due to other factors. Nevertheless, we studied the e�ects of quantum �elds on
cosmological spacetimes not only because of their relative simplicity but also because of
the relevance in cosmology. ¿erefore the �rst avenue is not always the generalization of
results to more general spacetimes, but also the better understanding of possible e�ects
on this restricted class of spacetimes. For example, we already mentioned in Sect. 8.5 that
the results are restricted to the conformally coupled scalar �eld with a certain choice for
the renormalization freedom as other choices can lead to equations involving higher than
second-order derivatives of the metric and ask for slightly di�erent approach. However,
it would be desirable to understand this problem also for non-conformal coupling and
discuss the full dependence of the solutions to the Einstein equation on the renormalization
freedom.

In the case of results on the metric �uctuations induced by quantum matter �uctua-
tions as presented in Chap. 9, we were even more restrictive and the discussion is mostly
based on the special case of a Newtonianly perturbed de Sitter spacetime. While straight-
forward generalization of this idea to asymptotically de Sitter spacetimes are possible
and were already published in [60], the next step should be to gain a clearer physical
and mathematical motivation of the used equations. A development in this direction is
[75], but also this work should only be seen as a �rst step. In any case, as soon as one
attempts to take into account the �uctuations of the stress-energy tensor one is faced
with the limitations of the semiclassical Einstein equation and any attempts to generalize
them, even if well-motivated, remains speculative in the absence of an accepted theory of
quantum gravity.

On one hand, when attempting to study quantum �eld theory in a mathematically
rigorous fashion one sees even clearer the non-uniqueness of many constructions and
one is confronted with many choices: Are all Hadamard states physically sensible? What
topology should be chosen for the algebra of quantum �elds? What is the appropriate
gauge freedom for the electromagnetic potential on non-contractible spacetimes? Is it
reasonable to work with an algebra of unbouded operators such as the �eld algebra or
should one always use a C∗-algebra? ¿ere are many more questions of this kind and they
require further mathematical and physical investigations but also intuition. Quantum �eld
theory and the quest for a quantum gravity is and will continue to be not only a research
e�ort and playground of physicists but also one of mathematicians.

On the other hand, many aspects of quantum �eld theory are now conceptually and
mathematically very well understood but only a few models have been studied in all their
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detail. In particular interacting quantum �elds on curved spacetimes have received rela-
tively little attention given that already free �elds are a complicated matter. Investigations
of physically interesting interacting models, using perturbative techniques, are largely
absent from the literature and deserve more attention.

For these reasons one can expect that the �eld of quantum �eld theory (on curved
spacetimes) will remain an interesting �eld of study for many more years to come.
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