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Abstract: Quantum field theories on de Sitter spacetime with global U(1) gauge sym-
metry are deformed using the joint action of the internal symmetry group and a one-
parameter group of boosts. The resulting theory turns out to be wedge-local and non-
isomorphic to the initial one for a class of theories, including the free charged Dirac
field. The properties of deformed models coming from inclusions of CAR-algebras are
studied in detail.
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1 Introduction

The construction of interacting quantum field theories by deformations using suitable
actions of IRn has recently attracted much attention [GL07], [BS08], [GL08], [BLS10],
[DT10], [DLM10]. A first example of this kind was found for the scalar free field on
Minkowski space by Grosse and Lechner [GL07], where the deformed operators fulfill a
weakened form of locality (wedge-locality) and the two-particle scattering is non-trivial.
Later on this deformation method (warped convolution) was generalized to arbitrary
quantum field theories on Minkowski space by Buchholz and Summers [BS08]. It is
formulated in terms of an action of the translation subgroup of the Poincaré group
and the resulting theory has similar properties as in the scalar free field case. Within
a Wightman setting this deformation manifests itself as a deformation of the tensor
product of the underlying Borchers-Uhlmann algebra [GL08]. Subsequently [BLS10]
it was realized that there is in fact a close connection between warped convolutions
and a well known deformation method for C∗-algebras in mathematics, namely, Rieffel
deformations [Rie93]. It turns out that the warped algebra forms a representation of the
Rieffel deformed algebra for a fixed deformation parameter. Later on this deformation
scheme was applied to various situations in quantum field theory. In the chiral conformal
case the first examples of massless models which are interacting and asymptotically
complete were constructed by these methods [DT10]. Quantum field theories on a class
of curved spacetimes relevant to cosmology can also be deformed using the flow of
suitable Killing vector fields instead of translations [DLM10].

The de Sitter spacetime does not belong to the class of spacetimes considered in
[DLM10]. It is the purpose of this paper to apply the warped convolution deformation
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procedure to quantum field theories on this spacetime. We use a combination of external
and internal symmetries, consisting of a one-parameter group of boosts associated with
a wedge and a global U(1) gauge symmetry, as an IR2-action to define the deformation.
The resulting theory is wedge-local and unitarily inequivalent to the undeformed one
for a class of theories, including the free charged Dirac field.

In Section 2 the basic notions concerning the geometry and causal structure of de
Sitter space are recalled and we discuss the de Sitter group together with its universal
covering. After that, the covariance and inclusion properties of a class of distinguished
regions (wedges) in de Sitter space are studied.

In Section 3 we consider quantum field theories with global gauge symmetry within
the algebraic setting (field nets) and we show how to reconstruct a wedge-local field
net from an inclusion of two C∗-algebras, which are in a suitable relative position to a
wedge. Then the warped convolution deformation is applied to a field net with global
U(1) gauge symmetry and the properties of the resulting theory are studied.

In Section 3.3 a particular class of field nets is investigated in more detail, namely,
nets of CAR-algebras. For these theories the deformed operators can be computed
explicitly. The fixed-points of the deformation map are determined and it is shown that
the deformed and undeformed field nets are non-isomorphic.

In the conclusions we comment on warped convolutions in terms of purely external
and internal symmetries using other Abelian subgroups of the de Sitter and gauge group.

2 de Sitter spacetime

2.1 Geometry and causal structure

The de Sitter spacetime (M, g) is a vacuum solution of Einstein’s equation with positive
cosmological constant. It is maximally symmetric, so it admits 10 Killing vector fields,
which is the maximum number for a spacetime of dimension four. It is also globally
hyperbolic, so the Cauchy problem for partial differential equations of hyperbolic type,
such as the Klein-Gordon and Dirac equation, is well-posed. Furthermore, it is a special
case of the Friedmann-Robertson-Walker spacetimes which describe a spatially homoge-
neous and isotropic universe and it plays a prominent role in many inflationary scenarios
for the early universe [Lin09].

Most conveniently it can be represented as the embedded submanifold

M =
{
x ∈ IR5 : η(x, x) = −1

}

of five-dimensional Minkowski space (IR5, η), where IR5 is identified with TxIR
5, x ∈ IR5.

The signature of η is (1,−1,−1,−1,−1) and the de Sitter radius is fixed to one. The
metric g on M is the induced metric from the ambient space, i.e., g = ι∗η, where
ι : M →֒ IR5 is the embedding map. We use the ambient space notation to parametrize
the de Sitter hyperboloid, so we write x = (x0, x1, ~x), ~x = (x2, x3, x4) for points in M ,
subject to the relation (x0)2 −∑4

k=1(x
k)2 = −1, where {xµ : µ = 0, . . . 4} is a Cartesian

coordinate system of IR5.
Since the metric on M is the induced metric from the ambient Minkowski space, the

causal structure is also inherited. Hence points in (M, g) are called timelike, spacelike
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or null related, if they are so as points in (IR5, η), respectively. We fix a time orientation
in (M, g) once and for all. The interior of the causal complement of a spacetime region
O ⊂ M is denoted by O′.

For the generators of the Clifford algebra which is associated with the quadratic form
η(x, x) on the vector space IR5 we use the representation [Gaz07]

γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
, γk =

(
0 ek
ek 0

)
, k = 2, 3, 4,

where ek = (−1)kσk−1 and σk−1 are the Pauli matrices. We have {γµ, γν} = 2ηµν · 1 and
{1, e1, e2, e3} is a basis of the quaternions H. Note that this representation is in fact not
faithful, since iγ0 · · · γ4 = 1. Similar to the case of four-dimensional Minkowski space,
where points are parametrized by hermitian 2 × 2 matrices, we parametrize points on
the de Sitter hyperboloid by 2×2 quaternionic matrices. This parametrization is useful
for the discussion of the covering group of the de Sitter group later on. Define

M ∋ (x0, x1, ~x) 7−→ x
˜
:=

4∑

µ=0

xµγµ =

(
x0 −q
q −x0

)
∈ Mat(2,H),

where q = (x1,−~x) is the quaternionic conjugate of q = (x1, ~x). Conversely, every 2× 2
matrix of the above form determines a point in de Sitter space via

xµ =
1

4
Tr(γµx˜

).

The map x 7→ x
˜

defines an isomorphism between M and H(2,H)γ0 ⊂ Mat(2,H),
where H(2,H) are the hermitian 2 × 2 matrices over H. Furthermore, there holds
η(x, x)1 = x

˜
∗γ0x˜

γ0, where x
˜
∗ is the transpose of the quaternionic conjugate of x

˜
.

2.2 The de Sitter group and its covering

The isometry group of (M, g) is

O(1, 4) = {Λ ∈ Mat(5, IR) : ΛTηΛ = η}

and its action onM is given by the action of the Lorentz group in the ambient Minkowski
space. This group is a ten-dimensional, non-compact, non-connected and real Lie group
which has four connected components. The connected component which contains the
identity is denoted by L0 := SO(1, 4)0. This group is called de Sitter group (proper
orthochronous Lorentz group) and its elements preserve the orientation and time orien-
tation of (M, g).

Since we also want to treat quantum fields with half-integer spin we consider the
two-fold (and universal) covering of L0, which is the spin group L̃0 := Spin(1, 4). Hence
there exists a short exact sequence of group homomorphisms

1 −→ ker(π) = {±1} −→ L̃0
π−→ L0 −→ 1.
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There holds L0
∼= L̃0/{±1} and L̃0 is simply connected. Note that the Lie group

Spin(1, 4) is isomorphic to the pseudo-symplectic group [Tak63]

Sp(1, 1) =

{(
a b
c d

)
∈ Mat(2,H) : āb = c̄d, |a|2 − |c|2 = 1, |d|2 − |b|2 = 1

}
.

Equivalently, g ∈ Sp(1, 1) if and only if g∗γ0g = γ0. In this representation the covering

homomorphism π : L̃0 → L0 is given by

(π(g))µν =
1

4
Tr(γµgγνg

−1), g ∈ L̃0

and L̃0 acts on M by conjugation x
˜
7→ gx

˜
g−1.

2.3 de Sitter wedges

Now we discuss the typical localization regions of the deformed quantum fields from
Section 3. In [BB99] a de Sitter wedge is defined as the causal completion of the worldline
of a uniformly accelerated observer (timelike geodesic) in de Sitter space. Equivalently,
they can be characterized as intersections of wedges in the ambient Minkowski space
[TW97] and the de Sitter hyperboloid. Hence we specify a reference (or right) wedge by

W0 := {x ∈ IR5 : x1 > |x0|} ∩M

and define the family of wedges W as the set of all de Sitter transforms of W0:

W := {gW0 : g ∈ L0}.

By definition, L0 acts transitively on W. Each wedge W ∈ W has an attached edge
EW which is a two-sphere. We have EW0

= {x ∈ M : x0 = x1 = 0} and EW =
gEW0

for W = gW0. The wedge W coincides with a connected component of the
causal complement of the edge EW [BB99]. For the stabilizer of the wedge W we write
L0(W ) := {g ∈ L0 : gW = W}.

From the properties of wedges in (IR5, η) follows that the causal complement of a
wedge is again a wedge and that every W ∈ W is causally complete, i.e., W ′′ = (W ′)′ =
W . Furthermore, the family W is causally separating, so given spacelike separated
double cones O1,O2 ⊂ M , there exists a W ∈ W such that O1 ⊂ W ⊂ O2

′ (see
[TW97]).

Remark 2.1. Wedges are frequently used as localization regions in quantum field theory
[BW75], [Bor00], [BD+00]. Although a net of observables over wedges is to a certain
degree non-local, it is possible to construct a local theory over double cones from it. This
is achieved by taking suitable intersections of algebras associated with wedges. Since W
is causally separating the resulting theory satisfies, in particular, local commutativity
(see [BS08, BLS10]). To decide whether these intersections are in fact non-trivial remains
a challenging task in four dimensions.
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For every W ∈ W there exists a one-parameter group ΓW = {ΛW (t) ∈ L0 : t ∈ IR},
such that each ΛW (t), t ∈ IR maps W onto W and ΛW (t)W = W for all t ∈ IR. Moreover

ΛgW (t) = gΛW (t)g−1, g ∈ L0, t ∈ IR. (2.1)

Associated with ΓW is a future-directed Killing vector field ξW in the wedge W and the
worldline from which the wedge is constructed is an integral curve of (a portion of) this
vector field. Furthermore, for every W ∈ W there exists a reflection jW ∈ L0 which
maps W onto W and satisfies

jWW = W ′, jgW = gjWg−1, g ∈ L0. (2.2)

Since L0 acts transitively on W we only need to specify these maps for W0. We choose

ΛW0
(t) :=




cosh(2πt) sinh(2πt) 0
sinh(2πt) cosh(2πt) 0

0 0 13


 , jW0

(x0, x1, ~x) := (x0,−x1,−~x) (2.3)

and note that ξW0
= x1∂x0 + x0∂x1 is the associated Killing vector field.

Remark 2.2. Within the context of applications of Tomita-Takesaki modular theory in
quantum field theory the standard choice for the reflection is (x0, x1, ~x) 7→ (−x0,−x1, ~x),
which is an element of the extended symmetry group L+ = L0 ⋊ Z2. In this paper we
have no intention to use these techniques and the choice (2.3) appears to be more natural
since we restrict our considerations to L0. However, all of our results can be generalized
to the group L+ in a straightforward manner.

The following lemma collects the basic properties of these maps.

Lemma 2.3. Let W ∈ W and ΛW (t) ∈ ΓW , jW be as above. Then

a) gΛW (t)g−1 = ΛW (t), g ∈ L0(W ), t ∈ IR,

b) jWΛW (t)jW = ΛW (−t), t ∈ IR,

Proof. a): For g ∈ L0(W ) holds ΛW (t) = ΛgW (t) = gΛW (t)g−1 for all t ∈ IR by (2.1).
b) follows from jW0

ΛW0
(t)jW0

= ΛW0
(−t) and (2.1), (2.2).

The stabilizer of W has the form L0(W ) = ΓW × SO(3), where SO(3) are rotations
in EW . Hence ΓW coincides with the center of L0(W ). From b) follows that the Killing
vector fields associated with W and W ′ differ only by temporal orientation.

The following lemma shows that the possible causal configurations of wedges are
very much constrained in de Sitter space.

Lemma 2.4. Let W1,W2 ∈ W and W1 ⊂ W2. Then W1 = W2.

Proof. The wedges W1,W2 can be written as Wk = M ∩ W̃k, k = 1, 2, where W̃k is a
wedge in the ambient Minkowski space. Since the causal closure of Wk in IR5 coincides
with W̃k, there follows W̃1 ⊂ W̃2 from W1 ⊂ W2. As the edges EW̃k

both contain the
origin, there follows EW̃1

= EW̃2
and also EW1

= EW2
since EWk

= M ∩ EW̃k
. The

assertion W1 = W2 follows from the assumption W1 ⊂ W2 together with the fact that
Wk is a connected component of the causal complement of EWk

.
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Remark 2.5. All the previous statements carry over to the covering L̃0 in a straight-
forward manner. Define an action of L̃0 on W with the covering homomorphism

gW := π(g)W, g ∈ L̃0, W ∈ W, (2.4)

which is transitive, since L0 acts transitively. The one-parameter group ΓW ⊂ L0 lifts
to a unique one-parameter group Γ̃W ⊂ L̃0 and for its elements we write λW (t), t ∈ IR.

Again, since L̃0 acts transitively on W, we only need to specify these maps for W0. We
have [Tak63, p.368]

λW0
(t) =

(
cosh(πt) sinh(πt)
sinh(πt) cosh(πt)

)
.

Clearly, λW (t)W = W and λgW = gλWg−1 for all g ∈ L̃0, W ∈ W with respect to the
action (2.4). For the lift of the reflection jW0

we choose

jW0
:=

(
1 0
0 −1

)
.

Again, jWW = W ′ and jgW = gjW0
g−1 for all g ∈ L̃0, W ∈ W with respect to (2.4).

Hence analogous statements as in Lemma 2.3 hold for Γ̃W with L0 replaced by L̃0, i.e.,

gλW (t)g−1 = λW (t), jWλW (t)jW = λW (−t), (2.5)

for all g ∈ L̃0(W ) := {g ∈ L̃0 : gW = W} and t ∈ IR.

3 Deformations of quantum field theories on de Sit-

ter spacetime

3.1 Field nets

We work in the operator-algebraic approach to quantum field theory on curved space-
times [Dim80] adapted to the concrete case of de Sitter space [BB99]. To this end,
we consider a C∗-algebra F (field algebra) whose elements are physically interpreted as
(bounded functions of) quantum fields on M . We equip F with a local structure and
focus on localization in wedges, since this turns out to be stable under the deformation.
Hence we associate to each W ∈ W a C∗-subalgebra F(W ) ⊂ F . Due to the trivial
inclusion properties of wedges in de Sitter space (see Lemma 2.4) the usual isotony
condition reduces to well-definedness of W 7→ F(W ).

We assume that there exists a strongly continuous representation α of L̃0 by auto-
morphisms on F , such that

1) (De Sitter Covariance): for all g ∈ L̃0, W ∈ W holds

αg(F(W )) = F(gW ).

Furthermore, we assume that there is a Lie group G (global gauge group) and a strongly
continuous representation σ of G by automorphisms on F , such that

7



2) (Gauge Invariance): for all h ∈ G, g ∈ L̃0, W ∈ W holds

σh(F(W )) = F(W ), σh ◦ αg = αg ◦ σh. (3.1)

We assume that there exists a distinguished element h0 ∈ G such that γ := σ(h0)
satisfies

γ2 = id. (3.2)

This (grading) automorphism can be used to separate an operator F ∈ F(W ) into its
Bose(+) and Fermi(−) part via F± := (F ± γ(F ))/2.

Remark 3.1. For convenience, we assume that the datum ({F(W ) : W ∈ W}, α, σ, γ)
is faithfully and covariantly represented on a Hilbert space H. So to each F(W ) corre-
sponds a norm-closed ∗-subalgebra of B(H) and the automorphisms α, σ, γ are imple-
mented by the adjoint action of unitary operators U, V, Y on H, respectively. Note that
this is no loss of generality since we can either use the covariant representation which
exists for C∗-dynamical systems (see [BLS10, DLM10] and references therein) or we
work in the GNS-representation of a de Sitter- and gauge-invariant state. In the former
case we assume that H is separable, as it is the case in a variety of concrete models.

We assume that the grading satisfies Y 2 = 1. With the operator Y a unitary twisting
map Z is defined to treat the (anti)commutation relations between the Bose/Fermi parts
of a field on the same footing [DHR69]. Let Z := (1− iY )/

√
2 and

F(W )t := ZF(W )Z−1.

The map F 7→ ZFZ−1 is an isomorphism of F(W ) and we have [Foi83]

F(W )tt = F(W ), F(W )t′ = F(W )′t, W ∈ W,

where the commutant is understood as the relative commutant in F . Locality is now
formulated in the following way

3) (Twisted Locality): F(W ) ⊂ F(W ′)t′, W ∈ W.

Twisted locality is equivalent to the ordinary (anti)commutation relations between the
Bose/Fermi parts F± of fields, i.e., [F+, G±] = [F±, G+] = {F−, G−} = 0 for F ∈ F(W ),
G ∈ F(W ′), W ∈ W (see [DHR69]).

For later reference we define the joint action τ : L̃0 × G → Aut(F) of the external
and internal symmetry group on F by

τg,h := αg ◦ σh, g ∈ L̃0, h ∈ G. (3.3)

The unitary which implements this action is U(g, h) := U(g)V (h).

Remark 3.2. A datum ({F(W ) : W ∈ W}, α, σ, γ) which satisfies conditions 1) − 3)
is referred to as a wedge-local field net. We simply write F to denote it, if no confusion
can arise. Examples are nets of CAR-algebras with gauge symmetry, such as the free
charged Dirac field.
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Remark 3.3. Given a field net, the net of observables is defined as

A(W ) := {F ∈ F(W ) : σh(F ) = F, h ∈ G},

so observables form the gauge-invariant part of the field net.

Due to the transitive action of L̃0 onW, it is possible to define a wedge-local field net
in terms of an inclusion of just two C∗-algebras which are in a suitable relative position
toW0. This point of view will be advantageous for the warped convolution later on, since
the deformation of a wedge-local field net amounts to deforming the relative position of
one algebra in the other. Following [BLS10] we make the following definition.

Definition 3.4. A causal Borchers system (F0,F , α, σ, γ) relative to W0 ∈ W consists
of

− an inclusion F0 ⊂ F of concrete C∗-algebras,

− commuting representations α : L̃0 → Aut(F) and σ : G → Aut(F) which are
unitarily implemented,

− an automorphism γ on F which commutes with α and σ and satisfies γ2 = id,

such that

a) αg(F0) = F0, g ∈ L̃0(W0),

b) αjW0

(F0) ⊂ (F0)
t′,

c) σh(F0) = F0, h ∈ G.

Proposition 3.5. Let (F0,F , α, σ, γ) be a causal Borchers system relative to W0. Then

W := gW0 7−→ αg(F0) =: F(W ), (3.4)

defines a wedge-local field net together with (α, σ, γ).

Proof. We begin by proving well-definedness. From g1W0 = g2W0 follows g
−1
2 g1W0 = W0

and αg−1

2
g1
(F0) = F0 by assumption a). Hence αg1(F0) = αg2(F0) and the assertion

follows.
Covariance holds by definition.
Twisted locality is proved in a similar way. Let W ′ = gW0. Since W = gjW0

W0

there holds

F(W ) = αgjW0

(F0) ⊂ αg((F0)
t′) = αg(F0)

t′ = F(W ′)t′, W ∈ W,

where we used condition b), together with the assumption that each αg, g ∈ L̃0 is a
homomorphism which commutes with γ.

The gauge invariance of the local algebras follows immediately:

σh(F(W )) = σh(αg(F0)) = αg(σh(F0)) = αg(F0) = F(W ),

since the representations α, σ commute and by assumption c).
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Note that the converse of this proposition is trivially true. Given a wedge-local field
net, then F(W0) ⊂ F satisfies property a) by covariance and b) by twisted locality.
Property c) holds by definition.

Remark 3.6. A causal Borchers system (F0,F , α, σ, γ) is closely connected to the notion
of a causal Borchers triple [BLS10] on Minkowski spacetime (see also [Lec10] for the
related notion of a wedge triple). In this setting, F0 ⊂ B(H) is a von Neumann algebra
and α is the adjoint action of a unitary representation U of the Poincaré group. In
addition one assumes that the joint spectrum of the generators of the translations U ↾ IR4

is contained in the closed forward lightcone (spectrum condition) and that F0 admits a
cyclic and separating vector (existence of a vacuum state). Gauge transformations are
absent in this setting since nets of observables are considered.

Remark 3.7. For the sake of brevity we will write F0 ⊂ F to denote a causal Borchers
system relative to W0.

3.2 Deformations of field nets with U(1) gauge symmetry

Now we apply the warped convolution deformation method to our present setting. Let
F0 ⊂ F be a causal Borchers system relative to W0. The basic idea is to define a defor-
mation (F0)ξ,κ of the small algebra F0 using a suitable IR2-action (see below) in such a
way that (F0)ξ,κ ⊂ F is again a causal Borchers system. Then the inclusion (F0)ξ,κ ⊂ F
gives rise to another wedge-local field net by Proposition 3.5.

For the warped convolution we make the further assumption that the gauge group is
G = U(1) ∼= IR/2πZ. The representation σ of U(1) yields a 2π-periodic IR-action
F 7→ σs(F ) by automorphisms on F . The warped convolution is now defined with the

IR2-action τ ξ coming from the one-parameter group of boosts Γ̃W0
⊂ L̃0 and the internal

symmetry group:
IR2 ∋ (t, s) 7−→ τλW0

(t),s =: τ ξt,s : F −→ F .

Note that Γ̃W0
implicitly depends on the Killing field ξ := ξW0

which is associated with
W0 (see Section 2.3). We will use the notation

λξ(t) := λW0
(t), Uξ(t) := U(λξ(t)), Uξ(t, s) := U(λξ(t), s).

Since the warped convolution is defined is terms of oscillatory integrals of operator-
valued functions, we first need to specify suitable smooth elements of the C∗-algebra F
for which these integrals are well-defined. The joint action (3.3) is a strongly continuous

action of the Lie group L̃0×U(1) which acts automorphically, and therefore isometrically,
on F . The algebra F0 is, in general, only invariant under the action of the subgroup
L̃0(W0)×U(1). Adapted to the present setting, and following [DLM10], we consider the

following notion of smoothness with respect to the subgroup Γ̃W0
×U(1).

Definition 3.8. An operator F ∈ F is called ξ-smooth, if IR2 ∋ v 7→ τ ξv (F ) ∈ F is
smooth in the norm topology of F . The set of all ξ-smooth operators in F is denoted
by F∞

ξ .
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Note that the set F∞
ξ is a norm-dense ∗-subalgebra of F (see [Tay86]). Another

ingredient for the definition of the warped convolution is the antisymmetric (real) matrix

θ :=

(
0 1
−1 0

)

and an arbitrary but fixed real number κ which plays the role of a deformation param-
eter.

Definition 3.9. The warped convolution of an operator F ∈ F∞
ξ is defined as

Fξ,κ :=
1

4π2
lim
ε→0

∫

IR2×IR2

dv dv′ e−ivv′ χ(εv, εv′) τ ξκθv(F )Uξ(v
′). (3.5)

Here vv′ denotes the standard Euclidean inner product of v, v′ ∈ IR2 and χ ∈ C∞
0 (IR2 ×

IR2), χ(0, 0) = 1 is a cutoff function which is necessary to define this operator-valued
integral in an oscillatory sense.

From the results in [BLS10] follows that the above limit exists in the strong operator
topology of B(H) on the dense domain

H∞ := {Φ ∈ H : L̃0 × U(1) ∋ (g, s) 7→ U(g, s)Φ ∈ H is smooth in ‖ · ‖H}

and is independent of the chosen cutoff function χ within the specified class. The densely
defined operator Fξ,κ extends to a bounded and smooth operator, which is denoted by
the same symbol.

Definition 3.10. The space of all vectors which are smooth with respect to the repre-
sentation Uξ is denoted by H∞

ξ .

Furthermore, it is shown in [BLS10] that the warped convolution (3.5) is closely
related to Rieffel deformations of C∗-algebras [Rie93]. In this context one defines, instead
of a deformation of the algebra elements, a new product ×ξ,κ on F∞

ξ by

F ×ξ,κ F
′ :=

1

4π2
lim
ε→0

∫

IR2×IR2

dv dv′e−ivv′χ(εv, εv′)τ ξκθv(F )τ ξv′(F
′).

This limit exists in the norm-topology of F for all F, F ′ ∈ F∞
ξ and F ×ξ,κ F

′ is again in
F∞

ξ . The completion of (F∞
ξ ,×ξ,κ) in a suitable norm yields another C∗-algebra [Rie93].

The following lemma collects the basic properties of the map F 7→ Fξ,κ and shows
that the warped operators form a representation of the Rieffel deformed C∗-algebra for
a fixed deformation parameter.

Lemma 3.11 ([BLS10, DLM10]). Let F, F ′ ∈ F∞
ξ and κ ∈ IR. Then

a) (Fξ,κ)
∗ = (F ∗)ξ,κ.

b) Fξ,κF
′
ξ,κ = (F ×ξ,κ F

′)ξ,κ.

c) If [τ ξv (F ), F ′] = 0 for all v ∈ IR2, then [Fξ,κ, F
′
ξ,−κ] = 0.
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d) If [Zτ ξv (F )Z∗, F ′] = 0 for all v ∈ IR2, then [ZFξ,κZ
∗, F ′

ξ,−κ] = 0.

e) Let X ∈ B(H) be a unitary which commutes with Uξ(v) for all v ∈ IR2. Then
XFξ,κX

−1 = (XFX−1)ξ,κ and XFξ,κX
−1 is ξ-smooth.

Proof. Statements a), b), c), e) were shown in [BLS10]. d) is a consequence of Lemma
3.2 in [DLM10] and the fact that γ commutes with α and σ.

The next lemma lists the transformation properties of warped operators under the
de Sitter and gauge group.

Lemma 3.12. Let F ∈ F∞
ξ , κ ∈ IR, g ∈ L̃0 and s ∈ U(1). Then

a) αg(F ) is g∗ξ-smooth and
αg(Fξ,κ) = αg(F )g∗ξ,κ, (3.6)

where g∗ξ is the push-forward of ξ with respect to g.

b) σs(F ) is ξ-smooth and
σs(Fξ,κ) = σs(F )ξ,κ. (3.7)

Proof. Statement a) follows from Lemma 3.3 a) in [DLM10] and the fact that α and σ
commute. Statement b) follows from Lemma 3.11 e).

Now we apply the warped convolution deformation method to a causal Borchers
system F0 ⊂ F . Define

(F0)ξ,κ := {Fξ,κ : F ∈ F0 ∩ F∞
ξ }‖·‖.

The following theorem shows that the inclusion (F0)ξ,κ ⊂ F gives rise to a wedge-local
field net in the sense of Proposition 3.5.

Theorem 3.13. Let (F0)ξ,κ be as above. Then

a) αg((F0)ξ,κ) = (F0)ξ,κ, g ∈ L̃0(W0),

b) αjW0

((F0)ξ,κ) ⊂ ((F0)ξ,κ)
t′,

c) σs((F0)ξ,κ) = (F0)ξ,κ, s ∈ U(1).

Proof. a): Let F ∈ F0 ∩F∞
ξ and g ∈ L̃0(W0). From (2.5) follows that g commutes with

each λξ(t), t ∈ IR. Hence

αg(Fξ,κ) = αg(F )g∗ξ,κ = αg(F )ξ,κ

by Lemma 3.12 a) and αg(F ) ∈ F0 by property a) of the undeformed causal Borchers
system. Therefore αg(Fξ,κ) ∈ (F0)ξ,κ and by taking the norm-closure of {Fξ,κ : F ∈
F0 ∩ F∞

ξ } the statement αg((F0)ξ,κ) = (F0)ξ,κ follows.
b): From Lemma 3.12 a) and (2.5) follows

αjW0

(Fξ,κ) = αjW0

(F )jW0∗

ξ,κ = αjW0

(F )ξ,−κ, (3.8)
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together with an elementary substitution in (3.5). We have αjW0

(F ) ∈ (F0)
t′ by property

b) of the undeformed causal Borchers system, i.e., [ZαjW0

(F )Z−1, F ′] = 0 for all F ′ ∈
F0. Pick some F ′ ∈ F0 ∩ F∞

ξ and consider its warped convolution F ′
ξ,κ. We have

[Zτ ξv (αjW0

(F ))Z−1, F ′] = 0 for all v ∈ IR2 since F0 is invariant under Γ̃W0
×U(1). Hence

[ZαjW0

(Fξ,κ)Z
−1, F ′

ξ,κ] = αjW0

([ZFξ,κZ
−1, αjW0

(F ′
ξ,κ)]) = αjW0

([ZFξ,κZ
−1, F ′

ξ,−κ]) = 0

by (3.8) and Lemma 3.11 e). By taking the norm-closure of {Fξ,κ : F ∈ F0 ∩ F∞
ξ } the

statement αjW0

((F0)ξ,κ) ⊂ ((F0)ξ,κ)
t′ follows.

Assertion c) is a consequence of Lemma 3.12 b) and the invariance F0 under gauge
transformations.

Remark 3.14. Note that the minus sign which appears in (3.8) is the main reason why
the locality proof works. That this argument is also valid for the extended symmetry
group L+ can be seen in the following way. The reflection ĵW0

(x0, x1, ~x) = (−x0,−x1, ~x)
commutes with boosts in the x1-direction. Again, a deformed operator transforms under
the lift ĵW0

of ĵW0
according to α

ĵW0

(Fξ,κ) = Fξ,−κ since ĵW0
is represented by an

antiunitary operator.

3.3 Example: Deformations of CAR-nets

Now we investigate a particular class of wedge-local field nets in more detail, namely,
nets of CAR-algebras. The free charged Dirac field is an example thereof. After it is
shown that these models fit into the framework of Section 3.2, the properties of the
deformed field operators and observables are studied in detail and it is proved that the
deformed and undeformed nets are non-isomorphic.

3.3.1 The selfdual CAR-algebra

We use Araki’s selfdual approach to the CAR-algebra [Ara71]. Let H be a separable
infinite-dimensional complex Hilbert space with inner product 〈. , .〉 and let C be an
antiunitary involution on H , i.e., C2 = 1 and 〈Cf1, Cf2〉 = 〈f2, f1〉 for all f1, f2 ∈ H .
On the ∗-algebra CAR0(H,C) which is algebraically generated by elements B(f), f ∈ H
and a unit 1, satisfying

a) f 7→ B(f) is complex linear,

b) B(f)∗ = B(Cf),

c) {B(f1), B(f2)} = 〈Cf1, f2〉 · 1,
there exists a unique C∗-norm satisfying (see [EK98])

‖B(f)‖2 = 1

2
(‖f‖2 +

√
‖f‖4 − | 〈f, Cf〉 |2).

Hence each B(f) is bounded and f 7→ B(f) is norm-continuous. The C∗-completion
of CAR0(H,C) is denoted by CAR(H,C). This C∗-algebra is simple [Ara71], so all its
representations are faithful or trivial.

13



If u is a unitary on H which commutes C, then αu(B(f)) := B(uf) defines a ∗-
automorphism on CAR(H,C). We refer to u as Bogolyubov transformation and to αu

as Bogolyubov automorphism.

3.3.2 Quasifree representations

A state ω on CAR(H,C) is called quasifree, if

ω(B(f1) · · ·B(f2n+1)) = 0

ω(B(f1) · · ·B(f2n)) = (−1)n(n−1)/2
∑

ǫ

sgn(ǫ)

n∏

j=1

ω(B(fǫ(j))B(fǫ(j+n)))

holds for all n ∈ IN, where the sum runs over all permutations ǫ of {1, . . . , 2n} satisfying

ǫ(1) < · · · < ǫ(n), ǫ(j) < ǫ(j + n), j = 1, . . . , n.

Let S be a bounded linear operator on H satisfying

S = S∗, 0 ≤ S ≤ 1, CSC = 1− S.

In [Ara71, Lemma 3.3] it is shown that for every such S there exists a unique quasifree
state ωS satisfying

ωS(B(f)B(g)) = 〈Cf, Sg〉 .
Conversely, every quasifree state on CAR(H,C) gives rise to such an operator [Ara71,
Lemma 3.2]. Hence quasifree states can be parametrized by this class of operators.

Let ωS be a quasifree state. For the GNS-triple associated with (CAR(H,C), ωS)
we write (HS, πS,ΩS). If a Bogolyubov transformation u commutes with S, then the
associated Bogolyubov automorphism can be unitarily implemented, i.e., there exists a
unitary operator US on HS, such that

πS(αu(F )) = USπS(F )U−1
S , USΩS = ΩS

holds for all F ∈ CAR(H,C) (see [Ara71, Lemma 4.2]).
Fock states are a particular class of quasifree states where S = P is a projection.

The GNS Hilbert space HP is the Fermionic Fock space over PH

HP = C⊕
⊕

n≥1

∧nPH,

where ∧nPH denotes the antisymmetrization of the n-fold tensor product of PH , the
cyclic vector ΩP is the Fock vacuum in HP and

πP (B(f)) = a∗(PCf) + a(Pf),

with the standard Fermi creation and annihilation operators a#(Pf) on HP . Two rep-
resentations (HP , πP ) and (HP ′, πP ′) are unitarily equivalent if and only if P − P ′ is
Hilbert-Schmidt (see [Ara71] and [SS64]). As a consequence, a Bogolyubov transforma-
tion u is unitarily implementable if and only if [u, P ] is Hilbert-Schmidt.
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3.3.3 Nets of CAR-algebras

In order to introduce charges and global gauge transformations we double the Hilbert
space H := H ⊕H and define the antiunitary involution

C :=

(
0 C
C 0

)
.

For the inner product on H we write (. , .). Applying Araki’s construction to (H ,C )
yields again a C∗-algebra CAR(H ,C ). The unitary operators

v(s)(f+ ⊕ f−) := eisf+ ⊕ e−isf−, s ∈ IR, f± ∈ H (3.9)

commute with C so there exists a representation σ : U(1) → Aut(CAR(H ,C )), such
that

σs(B(f)) = B(v(s)f). (3.10)

We assume that there exists a unitary representation u of L̃0 on H which commutes
with C so that there exists a representation α : L̃0 → Aut(CAR(H ,C )) satisfying

αg(B(f)) = B(u(g)f).

For the representers of the subgroup Γ̃W0
we write uξ(t) := u(λξ(t)), t ∈ IR.

Remark 3.15. The picture in terms of spinors and cospinors is obtained by setting

Ψ(f−) := B(0⊕ f−), Ψ†(f+) := B(f+ ⊕ 0). (3.11)

There holds Ψ(f−)
∗ = Ψ†(Cf−),Ψ

†(f+)
∗ = Ψ(Cf+) and from the linearity of f 7→ B(f)

follows that (co)spinors transform according to

σs(Ψ(f−)) = e−isΨ(f−), σs(Ψ
†(f+)) = eisΨ†(f+) (3.12)

under gauge transformations.

Now we come to the net structure of the theory. Let H0 ⊂ H be a complex linear
subspace satisfying C H0 ⊂ H0 and

i) u(g)H0 = H0, g ∈ L̃0(W0),

ii) u(jW0
)H0 ⊂ (H0)

⊥,

iii) v(s)H0 = H0, s ∈ IR,

where (H0)
⊥ is the orthogonal complement of H0.

Remark 3.16. In concrete models this space is explicitly given and can be constructed
by different methods. In the case of the free charged Dirac field the space H0 can be
defined as the set of (Fourier-Helgason transforms of) spinor-valued testfunctions on M
which are localized in the wedge W0 (see [BG+02] and [BM95] for the scalar free field
case) or one considers smooth sections of the Dirac bundle over M modulo the kernel
of the causal propagator which is associated with the Dirac equation [Dim82], [San10].
Since this space is constructed from testfunctions it is clear that conditions i), ii) and
iii) are satisfied.
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It is an easy exercise to show that the above conditions imply that

W := gW0 7→ u(g)H0 =: H (W )

is an isotonous, L̃0-covariant, wedge-local and gauge-invariant net of complex Hilbert
spaces in the sense of [BJL95]. Hence it is an immediate consequence of Araki’s con-
struction that

W 7→ CAR(H (W ),C ) =: F(W ) ⊂ F := CAR(H ,C ) (3.13)

is a wedge-local field net. Equivalently, from conditions i), ii) and iii) follows that the
inclusion CAR(H0,C ) =: F0 ⊂ F = CAR(H ,C ) satisfies

− αg(F0) = F0, g ∈ L̃0(W0)

− αjW0

(F0) ⊂ (F0)
t′

− σs(F0) = F0, s ∈ IR

and gW0 7→ αg(F0) defines a wedge-local field net by Proposition 3.5) which coincides
with (3.13).

Remark 3.17. Observables in this net are polynomials of Ψ(f−)Ψ
†(f+) which are man-

ifestly gauge-invariant. The quasilocal algebra, generated by them, is denoted by A.

From the above discussion it is clear that W 7→ F(W ) complies with the general
assumptions of Section 3.1. As we mentioned before, the algebra F contains a norm-
dense ∗-subalgebra of smooth elements F∞

ξ . These can be constructed by smoothening

out any element F ∈ F with a smooth and compactly supported function f ∈ C∞
0 (Γ̃W0

×
U(1)) via

Ff :=

∫

Γ̃W0
×U(1)

d(g, h)τ ξg,h(F )f(g, h)

where d(g, h) is the left-invariant Haar measure on Γ̃W0
× U(1). By choosing sequences

of functions fn which converges to the Dirac delta measure at the identity of Γ̃W0
×U(1)

one sees that these elements are dense in F in the norm topology. Since the subalgebra
F0 is invariant under the action τ ξ it also contains a norm-dense ∗-subalgebra of smooth
elements. For the warped convolution gW0 7→ αg((F0)ξ,κ) of a net of CAR-algebras we
will use the shorthand notation Fκ.

Remark 3.18. As we mentioned before, the free charged Dirac field provides an explicit
example of a wedge-local field net of CAR-algebras. For spin 1/2 fields there exists a
unique de Sitter-invariant state with the Hadamard property [AJ86], [AL86]. It is the
analogue of the Bunch-Davies state [All85] in the the spin 1/2 case. The Dirac field
in this representation was studied in [BG+02] and it was shown that it satisfies the
so-called “geometric KMS-condition”. By the same methods as in [BB99] one can prove
that this condition implies the Reeh-Schlieder property of the state.
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3.3.4 Deformation fix-points for observables

Let F be a CAR-net over (H ,C ) in a quasifree representation (HS, πS,ΩS) of a de
Sitter- and gauge-invariant state.

Remark 3.19. As we mentioned before, all representations of the CAR-algebra are
faithful so will omit the S-dependence in our notation from now on.

For the implementing operators we write

π(αg(B(f))) = U(g)π(B(f))U(g)−1, π(σs(B(f))) = V (s)π(B(f))V (s)−1.

As α and σ are strongly continuous, the representations U and V are also strongly
continuous. Stone’s theorem implies that the one-parameter group {V (s) : s ∈ IR} has
a unique self-adjoint generator Q with spectrum S ⊂ Z since V (2π) = 1. Hence the
representation space H is S-graded (charged sectors)

H =
⊕

n∈S

Hn, Hn = {Φ ∈ H : QΦ = nΦ}. (3.14)

From the transformation properties (3.12) for (co)spinors follows that π(Ψ(f−)) de-
creases charges by one and π(Ψ†(f+)) increases charges by one, i.e.,

π(Ψ(f−))Hn ⊂ Hn−1, π(Ψ†(f+))Hn ⊂ Hn+1

In the following we will frequently use the spectral decomposition V (s) =
∑

n∈S e
isnE(n),

where E(n) is the projector onto the eigenspace Hn of Q.
Before we determine the fix-points of the deformation map for observables, we com-

pute the warped convolution for intertwiners between charged sectors.

Proposition 3.20. Let π(F ) ∈ B(H) be ξ-smooth such that π(F )Hn ⊂ Hn+m. Then

π(F )ξ,κ =
∑

n∈S

Uξ(κn)π(F )Uξ(−κ(n +m))E(n).

Proof. Let Φ ∈ H∞
ξ . Then

π(F )ξ,κΦ = π(F )ξ,κ
∑

n∈S

E(n)Φ

=
∑

n∈S

π(F )ξ,κE(n)Φ

=
1

4π2

∑

n∈S

lim
ε→0

∫
dv

∫
dv′e−ivv′χ(εv, εv′)Uξ(κθv)π(F )Uξ(−κθv)−1Uξ(v

′)E(n)Φ

=
1

4π2

∑

n∈S

lim
ε→0

∫
dtds

∫
dt′ds′e−i(tt′+ss′)χ1(εt, εt

′)χ2(εs, εs
′)·

· Uξ(κs)V (−κt)π(F )V (−κt)−1Uξ(κs)
−1Uξ(t

′)V (s′)E(n)Φ

=
1

4π2

∑

n∈S

lim
ε1→0

∫
dtdt′ lim

ε2→0

∫
dsds′e−i(tt′+ss′)χ1(ε1t, ε1t

′)χ2(ε2s, ε2s
′)·
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· Uξ(κs)V (−κt)π(F )V (−κt)−1Uξ(κs)
−1Uξ(t

′)V (s′)E(n)Φ

=
1

4π2

∑

n∈S

lim
ε1→0

∫
dtdt′ lim

ε2→0

∫
dsds′e−i(tt′+ss′)χ1(ε1t, ε1t

′)χ2(ε2s, ε2s
′)·

· Uξ(κs)e
−iκtmπ(F )Uξ(κs)

−1Uξ(t
′)eis

′nE(n)Φ

=
1

4π2

∑

n∈S

lim
ε1→0

∫
dtdt′ lim

ε2→0

∫
dsds′e−it(t′+κm)e−is′(s−n)χ1(ε1t, ε1t

′)χ2(ε2s, ε2s
′)·

· Uξ(κs)π(F )Uξ(κs)
−1Uξ(t

′)E(n)Φ

=
1

2π

∑

n∈S

lim
ε1→0

∫
dtdt′e−it(t′+κm)χ1(ε1t, ε1t

′)Uξ(κn)π(F )Uξ(κn)
−1Uξ(t

′)E(n)Φ

=
∑

n∈S

Uξ(κn)π(F )Uξ(κn)
−1Uξ(−κm)E(n)Φ.

In the first line we used the strong convergence of
∑

n∈S E(n) to the identity and the
continuity of π(F )ξ,κ as an operator on H for the second equality. Since the definition
of the warped convolution (3.5) does not depend on the cut-off function χ we choose
χ(t, s, t′, s′) = χ1(t, t

′)χ2(s, s
′) with χl ∈ C∞

0 (IR × IR), χl(0, 0) = 1, l = 1, 2. For the
fifth equality we use Fubini and regularize the integrals in the variables s, s′ and t, t′

separately by introducing cutoffs ε1, ε2 (see [Rie93]). The behavior of π(F ) under gauge
transformations and V (s′)E(n) = eis

′nE(n) is used in the sixth line. After that the
s′-integration is performed and the Fourier transform of χ2 yields a factor 2πδ(s − n)
in the limit ε2 → 0 since χ2(0, 0) = 1. Similarly we obtain a factor 2πδ(t′ + κm) in the
limit ε1 → 0.

Remark 3.21. Specializing this proposition to m = 0 yields the warped convolution
for observables and m = ±1 for (co)spinors.

Next we determine the fix-points of the map π(A) 7→ π(A)ξ,κ for observables. For this
purpose we need some basic facts about one-parameter unitary groups. The unitary
operators {Uξ(t) : t ∈ IR} form a strongly continuous one-parameter group and by
Stone’s theorem there exists a unique selfadjoint and (in general) unbounded operator
Kξ (the generator the group) which is defined as

iKξΦ = lim
t→0

1

t

(
Uξ(t)Φ− Φ) (3.15)

on the dense domain D(Kξ) = {Φ ∈ H : limt→0

(
Uξ(t)Φ− Φ)/t exists}. For elements in

D(Kξ) where t 7→ Uξ(t)Φ is smooth in ‖ · ‖H we write D(Kξ)
∞. Note that D(Kξ)

∞ is
dense in H and Φ ∈ D(Kξ)

∞ if and only if Φ ∈ D((Kξ)
l) for all l ≥ 1. If an operator

commutes with Uξ(t) for all t ∈ IR, then D(Kξ)
∞ is invariant under its action. In

particular we have

Uξ(t)D(Kξ)
∞ ⊂ D(Kξ)

∞, t ∈ IR, E(n)D(Kξ)
∞ ⊂ D(Kξ)

∞, n ∈ S. (3.16)

Furthermore, for F ∈ F∞
ξ there holds π(F )D(Kξ)

∞ ⊂ D(Kξ)
∞ since F is smooth with

respect to boosts.
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Since observables A ∈ F are gauge-invariant, it follows that they are diagonal with
respect to the orthogonal decomposition (3.14) of the representation space:

π(A) =
⊕

n∈S

πn(A), πn(A) = π(A)E(n) : Hn → Hn.

Furthermore, since observables commute with gauge unitaries and leave charged sectors
invariant, it follows that each πn : A ⊂ F → B(Hn) is a representation of the quasilocal
algebra A. As all representations of the CAR-algebra are faithful, each πn, n ∈ S is
faithful. So if πn(A) = 0 for some n ∈ S, then A = 0, which implies πm(A) = 0 for all
m ∈ S by linearity.

Obviously, from Proposition 3.20 follows that π(A) is invariant under the deformation
if πn(A) = 1 for all n 6= 0, since

∑
n∈S E(n) converges strongly to the identity.

Proposition 3.22. Let A be the net of observables in a CAR-net F in a quasifree
representation of a de Sitter- and gauge-invariant state with Reeh-Schlieder property. Let
A ∈ A(W0) be a ξ-smooth observable. If there exists an ε ∈ IR such that π(A)ξ,κ = π(A)
for all |κ| < ε, then π(A) ∈ C · 1.

Proof. From the linearity of π(A) 7→ π(A)ξ,κ together with the fact that each projection
E(n) is linear and commutes with boosts and gauge transformations follows

π(A)ξ,κ =
⊕

n∈S

πn(A)ξ,κ =
⊕

n∈S

π(A)ξ,κE(n). (3.17)

Consider now compact intervals ∆,∆′ ⊂ IR and the spectral projections Ẽξ(∆), Ẽξ(∆
′)

of the generator Kξ. For Φ,Φ′ ∈ D(Kξ)
∞ define vectors Φ∆ := Ẽξ(∆)Φ and Φ′

∆′ :=

Ẽξ(∆
′)Φ′. As κ 7→ π(A)ξ,κ is constant in a neighborhood of κ = 0 there follows from

(3.17)

0 = (Φ′
∆′,

d

dκ
π(A)ξ,κE(n)

∣∣
κ=0

Φ∆)H.

Proposition (3.20) for observables (m = 0) implies

0 = (Φ′
∆′ ,

d

dκ
Uξ(κn)π(A)Uξ(−κn)E(n)

∣∣
κ=0

Φ∆)H = in(Φ′
∆′ , [Kξ, π(A)]E(n)Φ∆)H.

Note that E(n)Φ ∈ D(Kξ)
∞ and π(A)Φ ∈ D(Kξ)

∞ for all n ∈ S,Φ ∈ D(Kξ)
∞ due to

the invariance properties (3.16) of D(Kξ)
∞. Hence

0 = (Φ′
∆′ , [(Kξ)

l, π(A)]E(n)Φ∆)H = (Φ′
∆′ , [(Kξ)

l, πn(A)]Φ∆)H

for all n 6= 0, l ≥ 0 and since Φ∆, ∆ ⊂ IR compact is an analytic vector for Kξ, there
follows

0 = (Φ′
∆′ , [Uξ(t), πn(A)]Φ∆)H =

∑

l≥0

(it)l

l!
(Φ′

∆′ , [(Kξ)
l, πn(A)]E(n)Φ∆)H

19



As the linear span of {Φ∆ : ∆ ⊂ IR compact, Φ ∈ D(Kξ)
∞} is dense in H (see [Tay86,

p.8]), the bounded operator [Uξ(t), πn(A)] vanishes on H for n 6= 0. However, as

0 = Uξ(t)πn(A)Uξ(t)
−1 − πn(A) = πn(αλξ(t)(A)−A)

for all n 6= 0 implies πm(αλξ(t)(A) − A) = 0 for all m ∈ S it follows that [Uξ(t), πn(A)]
vanishes on H for all n ∈ S.

Since the GNS vector Ω is de Sitter invariant there holds

Uξ(t)π(A)Ω = π(A)Uξ(t)Ω = π(A)Ω,

so the vector π(A)Ω is boost-invariant. In [BB99, Lemma 2.2] it is shown that boost-
invariant vectors must in fact be invariant under the whole de Sitter group. Hence

U(g)π(A)U(g)−1Ω = U(g)π(A)Ω = π(A)Ω, g ∈ L̃0.

From the Reeh-Schlieder property of the state follows U(g)π(A)U(g)−1 = π(A) since Ω
is separating for A(W0). Pick g = jW0

and we find

π(A) ∈ A(W0)
′′ ∩ αjW0

(A(W0)
′′) ⊂ A(W0)

′′ ∩ (A(W0)
′′)′.

by locality. Powers and Størmer [PS70] have shown that every quasifree and gauge-
invariant representation of a CAR-algebra is primary so the local algebras are factors
which implies π(A) ∈ C · 1.

3.3.5 Unitary inequivalence

Let F be a CAR-net over (H ,C ) in a Fock representation (HP , πP ,ΩP ) of a de Sitter-
and gauge-invariant state. An example for such a projection is P = 1⊕ 0. It commutes
with C and all gauge transformations. Furthermore, if u is a representation of L̃0 on
H of the form u = u1⊕u2, where u1, u2 are representations of L̃0 on H which commute
with C and are mutual adjoints of each other, then the associated state (3.3.2) is de
Sitter- and gauge-invariant.

Remark 3.23. Again, we drop the P -dependence in our notation since all representa-
tions of the CAR-algebra are faithful.

In a Fock representation the gauge unitaries take the form V (s) = eisQ, where
Q = N⊗1−1⊗N is the charge operator and N is the number operator on the Fermionic
Fock space over PH . The Fock vacuum is invariant under gauge transformations. The
spectrum of Q is Z and H is Z-graded

H =
⊕

n∈Z

Hn, Hn = {Φ ∈ H : QΦ = nΦ}. (3.18)

The decomposition of H into charged sectors and particle sectors are connected via

Hn =
⊕

k−l=n

∧kPH ⊗ ∧lPH.
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The grading is implemented by Y = (−1)N , where N is the number operator on H (see
[Foi83]). In a Fock representation the (co)spinors take the form

π(Ψ(f−)) = a∗(0⊕ PCf−) + a(Pf− ⊕ 0) (3.19)

π(Ψ†(f+)) = a∗(PCf+ ⊕ 0) + a(0⊕ Pf+). (3.20)

A straightforward computation shows that the L̃0- and gauge-invariance of the state
implies

π(F )ξ,κΩ = π(F )Ω, F ∈ F∞
ξ , (3.21)

since two unitaries drop out in (3.5), which yields corresponding δ-factors after integra-
tion.

Now we show that the deformed and undeformed nets are unitarily inequivalent.
We proceed in a similar manner as in [BLS10, DLM10]. Consider the wedge W0 and a
rotation rφ about an angle φ > 0 in the (x1, x2)-plane. It is clear that the (bounded)
region

K := rφW0 ∩ r−φW0, |φ| < π/2

is a subset of W0 and that the reflected region jW0
K lies spacelike to W0 and rφW0.

Proposition 3.24. Let Fκ be the warped convolution of the CAR-net F in a Fock
representation of a de Sitter- and gauge-invariant state with Reeh-Schlieder property.
Suppose that u is a faithful representation of L̃0 on H which commutes with C and P .
Then the GNS vector Ω is not cyclic for F(K)κ

′′ for κ 6= 0. In particular, the nets F
and Fκ are unitarily inequivalent for κ 6= 0.

Proof. Let f− ∈ H(K)∞ξ . Hence f−, u(r
−φ)f− ∈ H(W0)

∞
ξ and the warped operators

π(Ψ(f−))ξ,κ, π(Ψ(u(r−φ)f−))ξ,κ are elements of F(W0)κ. From the de Sitter covariance
(3.6) follows

U(rφ)π(Ψ(u(r−φ)f−))ξ,κU(rφ)−1 = π(Ψ(f−))rφ∗ ξ,κ,

which is an element of F(rφW0)κ. Assume now that Ω is cyclic for F(K)κ
′′. This is

equivalent to Ω being cyclic for F(jW0
K)κ

′′ since U(jW0
) is unitary and U(jW0

)Ω = Ω.
Hence Ω is separating for F(jW0

K)κ
′, which contains F(W0)κ and F(rφW0)κ by locality.

From (3.21) follows π(Ψ(f−))ξ,κΩ = π(Ψ(f−))Ω = π(Ψ(f−))rφ∗ ξ,κΩ, i.e.,

π(Ψ(f−))ξ,κ = π(Ψ(f−))rφ∗ ξ,κ (3.22)

by the separating property of Ω. Consider now a vector ϕ ⊕ 0 ∈ PH ⊕ PH of charge
one in the one-particle space. Using Proposition 3.20 for m = −1 we find

π(Ψ(f−))ξ,κ(ϕ⊕ 0) =
∑

n∈Z

π(Ψ(uξ(κn)f−))Uξ(κ)E(n)(ϕ⊕ 0)

=

[
a∗(0⊕ PCuξ(κ)f−)) + a(Puξ(κ)f− ⊕ 0))

]
(uξ(κ)ϕ⊕ 0)

= (0⊕ PCuξ(κ)f−) ∧
(
uξ(κ)ϕ⊕ 0

)
+ (Puξ(κ)f− ⊕ 0, uξ(κ)ϕ⊕ 0)HΩ

= Uξ(κ)(0⊕ PCf−) ∧ (ϕ⊕ 0) + (Pf−, ϕ)PHΩ.
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For the second equality we used that ϕ⊕0 has charge one and the explicit form (3.19) of
cospinors in a Fock representation. For the third equality we used the usual action of the
Fermi creation and annihilation operators on Fock vectors. For the fourth equality we
used that u commutes with C and P and the fact that Uξ(κ) is the second quantization
of uξ(κ). By the same computation we find

π(Ψ(f−))rφ∗ ξ,κ(ϕ⊕ 0) = Urφ∗ ξ
(κ)(0⊕ PCf−) ∧ (ϕ⊕ 0) + (Pf−, ϕ)PHΩ.

As Ψ†(f)ξ,κΦ = Ψ†(f)rφ∗ ξ,κΦ for all Φ ∈ H∞
ξ by (3.22), there follows

Uξ(κ)(0⊕ PCf−) ∧ (ϕ⊕ 0) = Urφ∗ ξ
(κ)(0⊕ PCf−) ∧ (ϕ⊕ 0).

Since U is faithful, this implies 1 = λξ(−κ)rφλξ(κ)r
−φ which yields λξ(κ)r

φ = rφλξ(κ).
However, for κ 6= 0 this is only true for φ = 0 since boosts in the x1-direction do
not commute with rotations in the (x1, x2)-plane and contradicts our initial assumption
about the rotation rφ.

Therefore, the operator Ψ(f−)rφ∗ ξ,κ does depend on φ, so that the cyclicity assumption

on Ω for F(K)ξ,κ
′′, κ 6= 0 is not valid. On the other hand, we know that Ω is cyclic for

F(K)′′ by the Reeh Schlieder property of the state. A unitary which leaves Ω invariant
and maps F(K) onto F(K)ξ,κ would preserve this property, from which we conclude
that the undeformed and deformed net are not unitarily equivalent.

4 Conclusion and outlook

In this paper we applied the warped convolution deformation method to quantum field
theories with global U(1) gauge symmetry on de Sitter spacetime. We used the joint
action of a one-parameter group of boosts associated with a wedge and the internal sym-
metry group as an IR2-action to define the deformation. The deformed theory turns out
to be wedge-local and non-isomorphic to the undeformed one for a class of wedge-local
field nets, including the free charged Dirac field.

In the course of writing up this paper also partial negative results were obtained, which
we would like to briefly comment on.

The warped convolution using a combination of boosts and internal symmetries can,
in principle, also be defined for quantum field theories on Minkowski space. However,
the covariance properties of the deformed operators are very different in this setting and
a statement similar to Theorem 3.13 seems not to hold. The reason for this is that ΓW0

is, in contrast to the translations, not a normal subgroup of the Poincaré group. For a
Poincaré group element (a,Λ) one has

α(a,Λ)(Fξ,κ) = α(a,Λ)(F )(a,Λ)∗ξ,κ

and

(a,Λ)(0,Λ(t))(a,Λ)−1 = (−ΛΛ(t)Λ−1a+ a,ΛΛ(t)Λ−1) (4.1)
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subgroup Lie algebra generators
L1 SO(2)× SO(2) M12,M34

L2 O(1, 1)× SO(2) M01,M23

L3 IR2 M12 −M01,M23 −M03

L4 IR× SO(2) M12 −M01,M34

Table 1: Two-dimensional Abelian subgroups of the de Sitter group.

is the flow which is associated with (a,Λ)∗ξ. Observe that the Lorentz group acts on
ΓW0

merely by conjugation. For a translation (a, 1)W0 ⊂ W0 there is

α(a,1)(Fξ,κ) 6= α(a,1)(F )ξ,κ,

in general, since also a translational part is involved in (4.1).
An interesting question is whether other Abelian subgroups of the de Sitter group can

be used to define quantum field theories in terms of warped convolutions. A complete
classification (up to conjugacy) of all subgroups of L0 in terms of subalgebras of its Lie
algebra was given in [PWZ76] (see also [Sha70], [Hal04] for the SO(1, 3)0 case). A basis
Mµν , µ, ν = 0, . . . , 4 for the Lie algebra of L0 satisfies

[Mµν ,Mρσ] = ηµρMνσ + ηνσMµρ − ηνρMµσ − ηµσMνρ.

It can be realized by matrices Mµν = Eµν − Eνµ, M0µ = Mµ0 = E0µ − Eµ0, where the
matrix Eµν has a one at the intersection of the µ-th row and ν-th column and zeros
everywhere else. The two-dimensional Abelian subgroups of L0 are listed in table 4.
L1 consists of spatial rotations in the (x1, x2)- and (x3, x4)-plane. L2 are boosts in
the x1-direction and rotations in the (x2, x3)-plane. L3 corresponds to null rotations
(translational part of the stabilizer group of a light ray). L4 is a combination of a null
rotation and a spatial rotation. All of these groups can be used to define a warped
convolution with the associated IR2-action from the representation. Since we are on a
curved spacetime it appears to be reasonable to require that the group which is used
for the deformation is a subgroup of the stabilizer of a wedge. The reason is that
there is not an analogue of the spectrum condition on Minkowski space available which
restricts the spectral properties of the generators which are associated with isometries
(The microlocal spectrum condition only gives a restriction on the singularity structure
of the two-point function.). Comparing the subgroup structure of L0(W0) with the
above groups shows that only L2 is a subgroup. However, L2 violates conditions a) and
b) in Definition 3.4 for certain reflections: Denote by Fζ,κ the warped operator, where
ζ = (M01,M23) is a pair of Killing vector fields (compare [DLM10]) and consider the
reflection j12(x

0, x1, x2, x3, x4) = (x0,−x1,−x2, x3, x4) which satisfies j12W0 = (W0)
′.

The associated flow Λ(t, s) := exp(tM01) exp(sM23), t, s ∈ IR transforms as

j12Λ(t, s)j12 = Λ(−t,−s)

so that αj12(Fζ,κ) = αj12(F )j12∗ζ,κ = Fζ,κ and condition b) is violated. Similar problems
also appear if one uses a combination of boosts and translations along the edge of the
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wedge. From these observations we conclude that the position of the subgroup, which is
used for the deformation, within the isometry is very important and that a modification
of the standard warping formula is necessary in these cases.

A deformation with purely internal symmetries, e.g. U(1) × U(1), did not appear
to be interesting, because an adaption of Proposition 3.20 to this case yields that the
deformation is trivial on the level observables and also trivial for generators B(f), pro-
vided the induced charge structure of the gauge groups is the same.

The deformation scheme in this paper is very different from the one in [DLM10], where
the Killing flow associated with the edge of a wedge was used to formulate the defor-
mation. It would be desirable to establish a connection between the two approaches. In
the de Sitter case the edge is a two-sphere, which is an SO(3)-orbit, and an approach
as in [DLM10] would require a generalization of the warped convolution to group ac-
tions of SO(3). But deformations of C∗-algebras which are based on actions of general
non-Abelian groups do not seem to be available so far (see however [Bie02] for certain
examples).

It appears to be a challenging task to generate new examples of deformed quantum
field theories whose covariance and localization properties are well-behaved. However,
the quest of finding new deformation formulas is a worthwhile task and is expected to
yield better insights into the nature of interacting quantum field theories.
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