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The Kontsevich model

@ 2D quantum gravity can be formulated as a one-matrix
model with partition function

Z= /dM exp (—NZtn tr(M”)) . M =M*"eMy(C)

® For N — oo, this series in (t,) can be expressed in terms
of the 7-function for the Korteweg-de Vries (KdV) hierarchy.

@ Topological gravity leads to another series in (tn) with
coefficients given by intersection numbers of complex
curves.

@ Witten conjectured in 1990 that both series are the same.
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@ Kontsevich computed in 1992 the intersection numbers in
terms of weighted sums over ribbon graphs.

@ He proved these graphs to be generated from the Airy
function matrix model (Kontsevich model)

/dM exp (— Str(EM?) + ttr(M®))
Z[E] = , M=M*"eMy(C)
/dM exp ( — tr(EM?))

forE =E*>0andt, = (2n—1)!ltr(E ~(2"-1)),

@ Limit V' — oo of Z[E] gives the KdV evolution equation,
thus proving Witten’s conjecture.
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A matrix model inspired by noncommutative QFT

@ The simplest QFT on a 4D noncommutative manifold can
be written as a matrix model

/dM exp ( — tr((EM?) + tr(IM) — 3tr(M*))

Z[E,J,\] =

)

/dM exp ( — tr(EM?) — 2tr(M*))

where E = E* € Mpr(C) is the 4D Laplacian, A > 0 and
J € My (C) generates correlation functions.

@ We achieve the exact solution of Z[E,J, ] for N’ — oo and
after renormalisation of E , \.

@ This defines a QFT toy model in four dimensions, which is
non-trivial with coupling constant 0 < \ < 64r.

We have no idea what mathematical structure made this possible.
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Outline of the renormalisation

@ Expanding exp(tr(—%M“)) perturbatively gives infinitely
many divergent matrix integrals (the same as for ¢3).

@ Renormalisation is achieved in two steps:
thermodynamic limit and continuum limit.

@ First A — A2\ and E — N2E, are made N-dependent.
Double-scaling limit ' — oc corresponds to infinite-volume
limit in position space.

o The spectrum of E becomes continuous but with
UV-cutoff, [0, A?].
N A2
o Leadsto ) f(p) du(p) f(p), with d zu(p) the
p=0 0
spectral density of E.
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@ Integrals for 2- and 4-point functions diverge for A — oo.

o We introduce a A-dependence in E corresponding to
mass and wavefunction renormalisation.

o Cancellation of the A-divergence in the 2-point function
also cancels divergence in 4-point function (i.e. 8 = 0).

We would have been happy just proving that this prescription
constructs the model non-perturbatively for some A > 0.

@ But much more is achieved: We can compute any
renormalised correlation function exactly in 0 < \ < 64.

@ This involves a new special function G* : R, — [0, 1].

@ Key ingredients are Schwinger-Dyson techniques and the
theory of Carleman type singular integral equations.

There are a few gaps which all seem closable.
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Field-theoretical matrix models

@ classical scalar field ¢ € Co(RY) C B(H), with 3 [q dx ¢?(x)

@ translates to tr(¢?) < oo, i.e. nc scalar field is
Hilbert-Schmidt compact operator on Hilbert space H = L2(l, u)

o realise as integral kernel operators: M = (Mgap) € L2(Ix1, px )
@ product: (MN )z, = [, dju(C) MacMep
e trace: tr(M) = [ du(a) Maa
@ adjoint: (M*)ap = Mpa

@ action = non-linear functional S for ¢ = ¢* :
S[¢] =tr(E¢?) + V[¢], V[¢] =tr(P[¢])

E — unbounded positive selfadjoint op. with compact resolvent,
P[¢] — polynomial in ¢ with scalar coefficients

@ partition function Z[J] = /Dcz) exp(—S[¢] +tr(¢d))
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Ward identity

@ Unitary transformation ¢ — U¢U™* leads to Ward identity

0= [ Do [Eoo — 60E — 36+ 03] exp(~S[4] + ()
that describes how E, J break the invariance of the action.

..choose E (but not J) diagonal, use ¢, = ajiba:

Proposition [Disertori-Gurau-Magnen-Rivasseau, 2006]

The partition function Z[J] of the matrix model defined by the
external matrix E satisfies the |I| x |I| Ward identities
0?Z 0Z 0Z
0= (E +J —Jnaz—
2 ( & aJanaan T ”annp>

nel

For E of compact resolvent we can always assume that
m — Emy > 0 is injective!
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Topological expansion

@ Connected Feynman graphs in matrix models are ribbon
graphs.

@ Viewed as simplicial complexes, they encode the topology
(B, g) of a genus-g Riemann surface with B boundary
components (or punctures, marked points, holes, faces).

@ The k™ boundary component carries a cycle

Ni T _
Ipitopy, = [Z1 Jppya OF Ni external sources, Ny + 1 = 1.

_v1 N N
@ We expand W[‘J] - z §G\p1---le\---\Q1»~QNB\‘Jpll---pr\ll o "JQ1E-;--QNB
according to the cycle structure.

The cycle structure determines the kernel of (E; — E) when

0°Z[J
applied to > ()JW)[J]
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Theorem (Ward identity for injective E)

Z 92z
8Jan 8an

1 0z[3] . 0Z[J]
Ea—Ep n%: (‘]p” B, 83np )

This formula lets the usually infinite tower of Schwinger-Dyson
equations collapse:
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Schwinger-Dyson equations (for V [¢] = 2:tr(¢*))

further expansion of connected functions G.. = > ¢, G into
components of equal genus g leads to a short system of
Schwinger-Dyson equations:

1. Aclosed non-linear equation for Gg;) (planar+regular):

©
6 =t - (6960 - Sipo ‘G|ab|)
T Bat+By  EatEp g\ RO Ep—Ea

2. For every other Gg?_)__aN an equation which only depends on

° Gggl?“ak fork <N,

) Gg;?“ak withh < gandk <N + 2;

this dependence is linear in the top degree (N, g)

Some G need renormalisation of E, ¢, and \p!
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¢4 on Moyal space with harmonic propagation

¢*-theory on 4D-Moyal space w/ harmonic oscillator potential

2

Z \Z
S[¢] = /j4x <§¢* (—A+Q%(207 %)% + phare) d + T¢*¢*¢*¢) (x)

@ renormalisable as formal power series in A [Grosse-W., 2004]
(renormalisation of 12,..,A,Z € R, and Q € [0,1])
means: well-defined perturbative quantum field theory
1

@ Langmann-Szabo duality (2002): theories at 2 and Q* = 5
are the same; self-dual case <2 = 1 is matrix model

@ (-function vanishes to all ordersin A for O = 1
[Disertori-Gurau-Magnen-Rivasseau, 2006]
means: almost scale-invariant

Is the self-dual (critical) model integrable?
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Matrix basis and thermodynamic limit

The Moyal algebra has a matrix basis [Gracia-Bondia+Varilly,
1988] in which the previous action becomes for 2 = 1

270)?Z 2\
S[¢] = Z Em ¢mn®nm + (7 Z Pmn Pnk Pki Pim
m,neN?, m,n.k,IENZ,
4 2
En= (270)°Z (5Im| + 222 ) . |m|:=my +mp < N

@ (276)? is for Q = 1 the volume of the noncommutative
manifold which is sent to oo in the thermodynamic limit.

@ We do this in the double-scaling limit %" = A2;,? = const

@ Matrix indices become continuous %|p| ++ 12p with p € [0, A?].
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@ ¢ drops out in SD-equations (appearing via E, \s = (276)?Z2))
if the following function is #-independent:

g =N 2\2N—4+2B+4g ~(9)
Gp,|..pp = 1 (21047) Gley..lpal

(© will be the renormalised mass identified later)

@ Non-planar sector is scaled away:
|i|’ﬂ()ﬁOO ZSC:O Gfl) = G(_O)
but punctures B > 1 remain!

G,

@ For § — oo the oscillator potential (20~1x)? disappears.

@ We recover translation-invariant @ﬁ on (f=o00)-Moyal space,
i.e. ¢3 with highly non-local interaction.

@ This case was studied by [Becchi-Giusto-Imbimbo, 2003]
in momentum space. They called the topology ‘swiss cheese’.

Translate results from matrix to momentum space!
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The renormalised 2-point function

is non-linear integral equation for Gap[Z, ipare] alone.

@ The integrals diverge for finite Z, upare. We repair this by
normalisation conditions

(1) Ggg = 1 adjusting the renormalised mass ,
(2) %Gao‘a:o = —1 adjusting prefactor of Laplacian.

@ (1) and divergent part of (2) are processed, leaving finite
. 2
part Y := 25 limy_0 ¢ fOAdp (Gpo — Gpp)-
The normalised integral equation is cubic in Gy, but its
difference to the boundary equation is quadratic:
(Gab — Gao)(1 + Y + bGy) + bGZ,

A //\2 dp P(Gpb — Gpo)Gao — &(Gab — Gao)Gpo
= 64n2 J, p-a

Raimar Wulkenhaar (Miinster) Exact solution of a non-local four-dimensional quantum field theory



2-point function
(o] Jelele]

Assuming G, Holder-continuous, the integral is rearranged:

b 1+)+ MGy ) _

G+— )P ~ gz HalDr] = ~C
A
—%HO[D.O]—

where  Dgp = 2(Gap — Gao)

f(9)dq

g-—a

@ preserves LP[0, A?] for p>1, not for p=1 [M. Riesz, 1928],
|H]jo 1o = max(tan 55, cot 55) [Pichorides, 1972]

1 ra—e A2
Finite Hilbert transform #;[f ()] := = |irT(1) (/ +/ )
T e—> 0 ate

@ does not preserve C[0, A\?]

@ preserves locally-Holder* spaces (LP N H,)(]0, A?[)
[Okada-Elliott, 1994]

feH 0N & [fll,= sup [f(a)+ sup LRI=F@I_
0<a<A? o<acb<pz (D —a)”

Raimar Wulkenhaar (Miinster) Exact solution of a non-local four-dimensional quantum field theory



2-point function
[e]e] le]e]

The Carleman equation

Theorem [Carleman 1922, Tricomi 1957]

The singular linear integral equation

h(x)y(x) - ArHxly] =f(x),  x €[-1,1]
is for h(x) continuous + Holder near +1 and f € LP solved by

sin(f(x))

()= === (f(x) cos(#(x))

e’y [e=Helf (o) sin(0(e))] + )

/\

o(x) = arctan (¢ (x)) S‘”(‘)(X)):¢ Lo

(h(x))? + (Am)?

where C is an arbitrary constant.

Assumption:
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The breakthrough

Gap= 647(1 + ) SM0(3)) rtafon )] olfo(e)]

[Ala
Y A M sin’(bo(p)
1+Y 6472 Jo (&—Er)z
Oh(a) = afCta”( GATa’i ) *)
[0, 7] b+1+y+§i:{a[6'0]

Consequence: G, > 0!

Main steps of the proof:
Q (¥ is Carleman eq. % cotbp(a)Gao — %’Ha[G.o] :1?
@ Tricomi’s identity

e~ Hal%l cos(0y(a)) + Ha [e*”’Wb] sin(@b(o)} =1
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The self-consistency equation

Given boundary value G, s
Carleman computes Gg,p, A
in particular Gy, Gab
symmetry forces Gpg = Gy
0 /\2 a
Master equation
The theory is completely determined by the solution of the fixed
point equation (with ) determined by d"0|b o="1
_ 1+ dp
Gpo = Ttbr0° < 6472 / / 2 )2 M) >
64Tr Gpo

Problem 2 (Analysis): Rigorously prove existence and
uniqueness of solution Gyg in Holder space!
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Correlation functions for B = 1 punctures

Schwinger-Dyson equation for G, p,

by l+64 ’+6>1a Ha [G ] A
<E I aGaO )'(aGabl...bel) - mHa[.G'blmbN—l]

N—2

— )\ = Gb2|b2|+1~~~bN—1 - Gab2|+1---bN—1
= E by...by by —a

@ This is again a Carleman equation, with identical linear
part as for

@ Reality Z2=Z |mpI|es invariance under orientation reversal
Gabl..,bN,l - Gbel...bla - GabN,l...bl

Theorem (algebraic recursion formula for N-point function)

N=—2
Ghgby..by_; = (—A) i Gbob1mbz|71sz|bz|71~~bN71_Gb2|b1~~~b2|71Gb0b2l+1~“bN*l
0D1...DN—1 — (bo — b2|)(b1 - bel) J
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Graphical realisation

Gpgb; Ghyb; —Gbghs Ghyb
Ghpgbybobs = (—A) Eb; _Zb;)(bl 0—3b3 2 — @ @

i b= Gbibj leads to non-crossing chord diagrams; these are
counted by the Catalan number C”:W
2 2 ‘2

b b = ﬁ leads to rooted trees connecting the even or odd

vertices, intersecting the chords only at vertices

Problem 3 (Combinatorics): Which trees arise for a given
chord diagram?
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The effective coupling constant

The effective coupling constant Aesy = —GJy,0 Of ¢3-theory on
Moyaly—, is given in terms of the bare coupling constant A by

1 _ ¢ G
)\eﬁ )‘<1+ 647 2/ p AIO ( - pO) > 2)
(827Gp0)? (1+y+647er[GOO])

@ Assuming the master equation for G, to be solvable, the
change \git — A is only a finite renormalisation of Agf in
response to an infinite change of scales.

@ Consequently, the theory has a non-perturbatively vanishing
B-function, although it is not exactly scale-invariant.
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Functions with B > 2 punctures

@ By reality, (N1+ ... +Ng)-point functions with one N; > 2
are purely algebraic, e.g.

GajdGeb — GpdGea n )\GbaGc\d — GpcGayd \ Gabcd — Gdbea
(b—c)(b—a) (b—c)(c—a) (b—c)(d —a)

Gabc\d =A

GpaGedlef — GheGadlet + Gbajet Ged — Giclet Gad
(c—a)(b—d)

)\Gabcdef - Gebcdaf + /\Geabcdf - Gefbcda

(e—a)(b—d) (f —a)(b—d)

Gabcd|ef =A

+

@ They are expressed in terms of (N;+...+Ng)-point
functions with all N; < 2. These base functions are
solutions of new Carleman equations; their solutions are
explicit functions of Ggp.

Problem 4: This is explicitly checked only for B = 2 and to be
extended to B > 2.
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More open problems

Problem 5 (Analysis): The homogeneous Carleman equation
has not taken into account. They arise from a
winding number and seem to be relevant for A\ > 64r.

Problem 6 (Physics): So far this is a Euclidean quantum field
theory (no time). Is there an analytic continuation to a true
relativistic quantum field theory?

Problem 7 (Integrability): Is there a known integrable model
which explains these results, in analogy to the KdV equation for
the Kontsevich model?

Problem 8 (Algebraic geometry): What topic in algebraic
geometry does the M#-matrix model compute, in analogy to the
intersection numbers for the Kontsevich model?
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Summary

@ We have found the exact solution of a Euclidean
4D-quantum field theory. This came completely unexpected.

@ The solution is presumably of little interest for physics. Its
relevance lies in the mathematical structure which is not
yet understood.

@ The solved model is a rich cousin of the Kontsevich model.
It might be of similar importance in algebraic geometry,
integrability and combinatorics.

@ The expansion of the exact solution at A = 0 agrees with
the Feynman graph computation, which order by order has
bad behaviour whereas the exact solution is fine.

@ We see this as motivation that looking for alternatives to
perturbative quantum field theory in 4D is not hopeless.
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