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CAR algebras

Fermi fields

Description by CAR(H,T') == {v(f) | f € H, Tf)(z) = f(x) }
m The norm is uniquely fixed by

V() =9@f), {9} =Tf,9)y1l; VfgeH.

m Each generator can be decomposed into creation and annihilation
modes by means of projections P |'PT' =1 — P.

U(f) =¥ (Pf+TPLf)=d(Pf) +¢(TPLf) =4 (f) + ¢ ().

m Correlation functions emerge by projections and Wick theorem:

wp (P(f)(9)) = (T'f, Pg)y

m Fock space = GNS representation out of wp
(= () v (9)} = (Tf, Pg)y,  and ¢~ (f)Qp =0.
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CAR algebras
Standard notations

Fields will be equivalently expressed both as distributions

{ib(@),¥(y)} = d(z —y)

and as smeared operators, according to what we like most. Also, the real
line R is mapped onto the unit circle S! via the Cayley map
R

Y

14z |

1—1x I

T —

m Real Fermi field: # = L?(S'). No internal symmetries occur.

m Complex Fermi field: H# = L?(S!) @ L2(S') = L?(S!) ® C2.
Internal U(1) gauge symmetry and currents.
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CAR algebras
Representations

Two positive energy representations:

Vacuum state: wo(Y(2)Y(w)) = lim
5l 2= w

1 z+4w

Ramond state: wr(¥(2)Y(w)) = ]%i\lg1 Semr—w

They give rise, via GNS, to:

mo(¥(2)) = Z Yo 2 Y2 periodic on S!
nez+i

mR(Y(2)) = Z YR 2 L2 anti-periodic on S*
nez
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CAR algebras
Modular Theory on single interval: w

Choose A(O) as vN algebra and the vacuum state as Q. Then o' is the
one-parameter subgroup C Mob preserving the interval:

o' (¥(2)) = /0 om(2) ¥ (6-2me(2))

In two intervals E = | U —I| the action cannot be entirely geometric in each
interval anymore because of Takesaki's theorem!

If o5 (A(l)) C A(l) = JE€: A(E) — A(l) such that:
E(z) =z, z € A(l); E(x)Q=PRzQ, zc AE)

where P projects onto H = {zQ | z € A(l) }. Because of Reeh-Schlieder Q is also cyclic for
A(l), hence H, is dense in H. It follows that P = 1 and

E@)Q=2Q Ve AE); = &)=z Vze€ A(E)

thus this implies A(E) = A(l), which is not the case at hand.
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A multilocal isomorphism

The isomorphism [

Proposition:
3: CARO(s1) — cAR®)(sh)

B) 2 (W) T (-2 () = o (W(E) — ¥(-2)

2z

is an isomorphism preserving the vacuum state.

Local proof: compute the 2-point function:

1
22 _ 2

wo o B (¢ (z%)p(w?)) = wo (¢* () p(w?)) =

Global proof: relabel Fourier modes:

Bu = B(60) =nass = BN =ty s mEL+3

2

Multilocal Fermionization Gennaro Tedesco

9/22



A multilocal isomorphism

Change of localization

Notice: the real Fermi field 1 is located at two antipodal points +z € S*
while the complex Fermi field ¢ is located at 22 € S!.

Observables: since B preserves the vacuum state it extends to Wick

products. Observables may be embedded to give rise to “multilocal”
symmetries.

m Stress-energy tensor generates diffeomorphisms:

T g(2) eI =/ (2) d(75(2))-
m Currents generate gauge transformations:

) (2) e W) = 71 (2) ().
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A multilocal isomorphism

Multilocal symmetries

“Multilocal Fermionization” J

“Multilocal Diffeomorphisms”

B(T=12) = — 5o BU(E) + 13 (T30) + T (=) }

Again, under the action of 3, we have a mixing of ¥(z) and ¥ (—z) due to
the first contribution, on top of a geometric flow due to the second one.
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Multi-intervals modular theory

Modular theory on disjoint intervals: w

Since wp o f = wy ® wp then B intertwines the respective modular groups

J(R) o= IBOJLS(C)

This allows to independently compute the modular group for 2-intervals,
provided you know the modular group for 1-interval.

oly_1=BochoBf™;  obh=AdU (0 om) J

The novelty is that, due to the non-locality of [, the modular group JFU_|
mixes the components in 2-intervals (remember Takesaki's theorem):

L) v (0%),(2)
e (uy) o | (g@w?)
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Multi-intervals modular theory

Another way to look at it

The modular group in l-interval is given by dilations Ufg =AdU (6_ar¢)-
They arise as generated by the local SET T=1(f).

Its embedding under the multilocal map [ delocalizes the components,
therefore the adjoint action of 3 (T°=!(f)) happens to delocalize fields.

[T=H(f), (%)) = ol (¥(2?)) “local” dilations

JE] (Tczl(f)) h(2)] = ol (W(2) “multilocal” dilations

namely, the computation of the LHS allows to derive the RHS.
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Multi-intervals modular theory

Thanks to...

The formula for the modular mixing has been computed for the first time by
Casini & Huerta?

C (0 (akt) e [ ¢ 005G
o <¢<—Z>>_(—;<Z’t> CiW)) w(g%itu)))

where ¢ (z,1)2 + ca(z,1)2 = 1 and 6%, (2) = /), (22).
Roughly speaking look for an isomorphism (3: ¢» — B such that
B(2) O(z,t) B(z)~" = diagonal

Thus S diagonalizes the modular mixing.

1 H. Casini, M. Huerta: Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284 [hep-th]].

Multilocal Fermionization Gennaro Tedesco 15/22



MANY INTERVALS AND RAMOND
REPRESENTATION
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Generalizations
n-interval case

(D
Picture: symmetric n-interval on the circle. | '
\ ’

~
-~—>

Write n real fields as n complex fields being mutually conjugated each other
(p"))* = p(" 1K) (1), Let w | w™ = 1, the following

1—k nol . .
B: ok (") — ZT Zw(l_k)j P(w! z) (z € Stk=1,... ,n)
§=0

satisfies wp o B = wp ®...® wp and it intertwines
“—n—>
¢ ¢ -1
U wil =poomof
J

reproducing Casini & Huerta, as supposed.
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Generalizations

Ramond representation

CAR(R) possesses another positive energy representation, i.e. Ramond
representation induced via GNS from

L 1+ zy —1
wr(P(2)Y(y)) = 61_13(% VIt /Ity2a—y—ic '

Along the same lines as before one can prove the existence of

Br: CARR(S!) @' CARy(S') — CARR(S')

YR()® Lo = o (UR(2) +UR(=2));  1a® Yo(e?) = 5 (¥r(2) — ¥r(~2)

WR © BR = WR ® wo
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Generalizations

Ramond representation

From the previous it follows that

R 1u—1 = BR© (U%,g ® 067,2> o B!
with og |2 still some unknown geometric (?) action. Apply to the RHS of
the above map, first to Ar(z) = Br(1r ®" o(2?))

okt (On(2)) = Bro (ok 2 © 0G,12) © B (Ar(2))
= /BR (o} (O';;’ 12 ® Ué |2) (]-R Y ¢0(z2))

= on (100 VIGLE) v (1))
75 2w (Vo)
=WA (095:0))

hence geometric 2-intervals action w.r.t. 2-dilations on Ar(2).
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Generalizations

Ramond representation
On the other hand little can be said if you apply the previous to ugr(z), i.e.
pR(2) = Br(Yr(2%) @ 10)

ok o1 (1R(2)) = Bro (k.2 @ b 12) 0 Br " (ur(2))
— o ok © 0%, ) (¥8() ® 1o)
= fr o (or,1 (¥r(z")) @ 1o)

now what about O‘tR 2 (¢R(z2))? Invariance arguments show that the
action cannot be geometric inside 1 intervall!

. geometric on Ar(z);
2-intervals:

non-geometric on ugr(2);

1-interval: non-geometric.
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Brief summary

Brief summary

Key ideas:
m 3 an isomorphism 3: CAR™(S!) — CAR(S!), wp o 8 = wo.
m 3 is “multilocal”, i.e. fields in z € S are mapped into fields at w’z.

m Observables (currents and SET) are embedded via 8. New multilocal
symmetries arise.

m [ gives an underlying explanation for the Modular Theory of free Fermi
fields on disjoint intervals: namely the modular mixing is directly
traced back to the non-local isomorphism.

m Attempts to derive properties of the Ramond representation.
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