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Motivation from physics

High energy physics: Focus often on aspects of interaction
tested by scattering experiments (few particles ⇒ S-matrix)
Thermal behavior of system described by given theory also of
practical and conceptual interest:

Description of early universe, heavy ion collisions (quark-gluon
plasma) etc.
Thermal equilibrium states “preferred by physics” (return to
equilibrium).
Requirement of decent thermodynamical behavior: Selection
criterion for theories.

Deformed QFTs: Examples of interacting theories
⇒ non-pert. relativistic thermodyn. beyond the free fields
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Motivation from the deformation programme
Obtaining QFTs by algebraic methods

Starting with [Lechner 06]: Construction of interacting
quantum fields theories by algebraic methods via (auxiliary)
wedge local nets of algebras.
In 2d: Can proceed to local algebras.
Wedge algebras obtained via “deformation” from given
(usually free) QFT.
Direct interpretation for (special) wedge algebras in
non-commutative models.
In more than 2 dimensions: Step to local algebras not (yet?)
useful.
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Motivation from the deformation programme
Deformations and the spectrum condition

Family of deformations leading to wedge-local theories still
limited (e.g. for massive theories: no momentum transfer in
scattering).
Important for wedge locality in these constructions: Spectrum
condition.
Thermal representation would be example where
wedge-locality holds in situation without spectrum condition.
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Algebras

Undeformed object: Free scalar field

Aim: Keep algebra as small as possible (still large!)
Work with ∗-algebra generated by deformed fields φR,Q obtained
by deforming free field (in vacuum representation).

Undeformed field: Free scalar field φ of mass m on 3+1
dimensional Minkowski spacetime.
Acting on Fock-space H = C⊕

⊕∞
n=1Hn, H1 = L2(R4, dµm).

ϕ = a†(Ef ) + a(Ef ), (Ef )(p) := f̂ (
√

p2 + m2,p)

Unitary, positive energy repr. U of Poincaré group P↑ on H
(obtained as Γ(U1) from representation on H1).
Commutator: [φ(f ), φ(g)] = C(f , g) · 1; Fourier-transform of
(distributional) kernel of C : Ĉ .

Jan Schlemmer Thermal states of deformed quantum field theories



Introduction
General framework

KMS condition
Positivity

Conclusions

Algebras

Input of deformations

Class of deformations: Multiplicative deformation of free
theories as described in [Lechner 11].
Deformations parametrized by

Bounded analytic function ϕ on upper half-plane satisfying
ϕ(t) = ϕ(t)−1 = ϕ(−t) for t ∈ R.
Enters deformation via R ∈ L∞(R) s.t. R(t)2 = ϕ(t),
R(t) = R(t)−1 = R(−t).
Special case: R(t) = e it ; choice for some parts of talk
(simplifications in formulas).
Lorentz-antisymmetric deformation matrix

Q0 =


0 κ 0 0
κ 0 0 0
0 0 0 λ
0 0 −λ 0


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Algebras

Deformed fields

Using R define unitaries TR(x) by

[TR(x)Ψ]n(p1, . . . , pn) :=
n∏

k=1
R(x · pk)Ψn(p1, . . . , pn)

Using them define deformed field by

aR,Q(p) :=a(p)TR(Qp) a†R,Q(p) :=aR,Q(p)†

φR,Q(f ) =a†R,Q(Ef ) + aR,Q(Ef )
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Algebras

Properties of generators

We have

U(Λ, a)φR,Q(f )U(Λ, a)−1 = φR,ΛQΛ−1(f (Λ−1 · −a))

For the product of two (Fourier transformed) fields (formally):

φ̂R,Q(p)φ̂R,Q′(p′)−R(p · Qp′)R(p · Q′p′)φ̂R,Q′(p′)φ̂R,Q(p)

=TR(Qp)TR(−Q′p)Ĉ(p, p′) · 1 (1)

φR,Q0(f ) with supp f ⊂WR is localized in the right-wedge
WR = {x ∈ R4 | x1 > |x0|}.
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Algebras

The ∗-algebra

Localization and covariance properties of φR,Q strongly
suggest:

A(W = ΛWR +x) := {A | A pol. in φΛQ0Λ−1(f ), supp f ⊂W }

(Some) known results
This gives an isotonous, Poincaré covariant wedge-local net of
∗ − algebras [Lechner 11].
Different choices of roots R of the given function ϕ result in
equivalent nets. [Lechner/Tanimoto/S 12].
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Reduction of problem and crossed products
Now: Determine KMS-states ωβ on A, R(t) = eit , φQ := φR,Q

Can reduce monomial A = φ̂Q1(p1) · · · φ̂Qn (pn) to∏
1≤l<r≤n

eipl ·Qpr φ̂(p1) · · · φ̂(pn)U(Q1p1 + . . .+ Qnpn)

⇒ State ω determined by ωx (B) := ω(BU(x)), B a monomial
in free (Fourier-transformed) fields.
ωx has to satisfy twisted KMS condition [Buchholz/Longo 99]:

ωx (Aα(t+iβ)eB) = ωx ((αteB)αxA)

αx (A) := U(x)AU(x)−1, e a timelike unit vector.
In C∗-algebraic setting: Can realize deformed algebra as
multiplier algebra of crossed product Aoα R4, reduction to
functionals ωx and twisted KMS-condition follows in general.

Jan Schlemmer Thermal states of deformed quantum field theories



Introduction
General framework

KMS condition
Positivity

Conclusions

Twisted KMS condition
KMS functionals
KMS functionals

Explicit form of KMS functionals

Using (1) and the same technique as for free fields, a
recursion relation for ωx can be obtained.
From this: All odd n-point functions vanish.
Even n-point functions given by

ωβ(φ̂Q1(p1) · · · φ̂Qn (p2n) =w(−x)
∏

1≤l<r≤n
eipl ·Qpr × . . .

. . .×
∑

Pair.(l,r)

n∏
k=1

Ĉ(plk , prk )

1− exp
(
plk (βe + ix)

)
x :=

∑n
j=1 Qjpj .
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KMS functionals: Remarks

Appearance of function w makes KMS functionals highly
non-unique.
They are invariant under translations and rotation
With w(0) = 1 normalization and reality ( ωβ(A∗) = ω(A))
also hold.

But what about positivity?
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Subalgebras with fixed deformation matrix

Polynomials in deformed fields with same deformation matrix
Q form subalgebra AQ.
AQ invariant under translations.
⇒ Restr. of ωβ to AQ gives KMS state on AQ.
Function w and additional term in Bose-factor disappear
(x = 0).
Remaining functionals still differ from undeformed case (by
phase factors) but positivity can be shown.
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A special functional

“Traditional” method to obtain KMS states:
Put system in box Λ ⇒ Gibbs states ωβ,Λ = 1

Z Tr
(
e−βHΛ ·

)
⇒ Obtain KMS states as limΛ→R3 ωβ,Λ.
U ⇒ H identical for deformed and undeformed theory
⇒ Gibbs states also agree ⇒ State as in textbook statistical
mechanics of free Bose gas, but consider expectation values of
different operators AQ.
After limit: KMS functional w. non-continuous function w :

w(t) =

{
1 t = 0
0 else

For this functional: Many contractions vanish; only obviously
positive terms remain ⇒ KMS state.
State leads to representation on non-separable Hilbert-space.
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Some positivity from continuity of the deformation

Know positivity of KMS functionals for undeformed theory
For w = 1: n-point functions of deformed states depend
continuously on Q0.
For given polynomial AQ0 in deformed field (i.e. test functions
and wedges to which fields belong fixed):

ω(A∗Q0AQ0) ≥ 0

for ‖Q0‖ < δA.
However: δA depends on choice of polynomial, minimum over
all polynomials in algebra may be zero.
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Numerical search for counterexamples

Explicit knowledge of n-point functions makes automated
search for negative expectation values possible.
Implemented functions to calculate ωβ(A∗A) for arbitrary field
polynomial; automated search for counterexamples by
checking positivity of randomly generated polynomials A.
So far: Checks up to 8-point functions
(test-functions: polynomials × shifted, scaled Gaussian)
No negative values encountered so far!
Even stronger positivity property seems to be true:
All discrete approximands to expectation values
(integrals -> sums) positive.
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Summary

Thermal states provide additional insight into models obtained
by deformations.
KMS-functionals for ∗-algebras generated by deformed fields
can be explicitly calculated.
On subalgebras with fixed deformation matrix these
correspond to states of the undeformed algebra.
On the whole algebra their structure is more complicated +
uniqueness breaks down (function w).
Positivity of the functionals is hard to decide; there is however
a somewhat singular state obtained by approximations from
finite volume.
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TODO

Put suitable topology on ∗-algebra, make some of the
calculations more precise.
Determine which of the KMS functionals are positive.
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