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The main motivation is solving the semi-classical Einstein equation:

8πG ω(: Tµν :) = Gµν

We try to find a proper state ω whose energy-momentum tensor
matches the right hand side of the semi-classical Einstein equation.

Coherent states can be the states we are looking for, since these
states have the most classical behavior among the quantum states.
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One usually constructs coherent states with respect to a ground
state, but on general curved spacetimes there is no ground state.
Therefore one has to use a generalised ground state; here we
consider states of low energy as generalised ground states.
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The Klein-Gordon equation in a general curved spacetime is:

(−2 + m2 + ξR)φ = 0

where ξ is a coupling constant and R is the Ricci scalar.
The algebra A of the Klein-Gordon field is generated by the unit
element I and the smeared fields φ(g), formally defined as:

φ(g) =

∫
dx φ(x)g(x) (1)

where g(x) is a suitable test function. Moreover, the Klein-Gordon
equation and the canonical commutation relations are included in
A as suitable algebraic relations.

Reza Safari Coherent States and the Semi-Classical Einstein Equation



Introduction
Semi-Classical Einstein equation in 3D torus Spacetime

Solution for the Semi-Classical Einstein equation on de Sitter
Semi-Classical Einstein Equation on RW Spacetimes

Conclusions

Coherent states on curved spacetime

Coherent states ωf on curved spacetime are defined with respect
to generalised ground states and characterised by a classical
solution f of the Klein-Gordon equation.

Definition

We define an automorphism αf : A → A as follows:

αf [φ(g)] :=

∫
φ(x)g(x)dx +

∫
f (x)g(x)dx ,

where g(x) is a test function and f (x) is a solution of
Klein-Gordon equation. Then if ω is the generalised ground state
on A , ω ◦ αf is another state, which is called a coherent state.
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The Semi- Classical Einstein equation and
Energy-Momentum Tensor of Coherent states

For studying the backreaction of quantum fields on the background
spacetime we use the semi-classical Einstein equation:

8πG ω(: Tµν :) = Gµν

we use the energy-momentum tensor of coherent states as an
ansatz in semi-classical Einstein equation. The energy-momentum
tensor of a coherent state ωf looks like:

ωf (: Tµν :) = ω(: Tµν :) + Tµν(f )

where ω is a generalised ground state and f is a solution of
Klein-Gordon equation.
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In the case of a homogeneous and isotropic spacetime, it suffices
to consider the 00-component of this equation, i.e. on the left
hand side the energy density:

ωf (: ρ :) := ωf (: T00 :) = ω(: ρ :) + ρ(f )

In my work, on a given spacetime, we compute the energy density
of a general coherent state and try to find an f such that the
semi-classical Einstein equation is satisfied in the related coherent
state.
This general idea will be applied in three cases:
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Calculating the expectation value of the ground state energy
density in the 3D torus spacetime – the Casimir effect – and
using in order to solve the semi-classical Einstein equation in
this spacetime

Considering states of low energy and their corresponding
coherent states in de Sitter spacetime and trying to solve the
semi-classical Einstein equation by means of them

Solving the semi-classical Einstein equation in general
Robertson-Walker spacetimes by means of coherent states
with respect to states of low energy under the assumption
that the energy density of the latter is negligible
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Massless Case
Massive Case

We want to calculate the expectation value of the energy density
in the 4-dimensional flat spacetime M = R× T 3, where T 3 is the
3-torus with radius R.
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Massless Case
Massive Case

the Klein-Gordon field on the torus spacetime

The Klein-Gordon field on 3-dimensional torus spacetime in the
representation induced by the vacuum state k is given by:

φ(t, x) = (2πR)−
3
2

∑
n∈Z3

(2ωn)−
1
2 [ane

−i [ωnt− n·x
R

] + a†ne
i [ωnt− n·x

R
]]

where ωn = ( n2

R2 + m2)
1
2 and we consider n

R as the momentum in
torus spacetime which can possess only discrete values because of
the boundary conditions.
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Massless Case
Massive Case

the expectation value of normal ordered energy density is obtained
w.r.t. vacuum state ω on Minkowski spacetime:

k(: ρ(z) :) = k(ρ(z))− ω(ρ(z))

the energy density for the massive Klein-Gordon field at the point
z is given by:

ρ(z) =
1

2

[(
∂φ

∂t

)2

|z +
(
~∇φ
)2
|z +m2φ2 |z

]
we use the point-splitting prescription and and translation
invariance to represent the expectation value of the normal ordered
energy density by:

k(: ρ(z) :) = lim
x→0

[−1

2
(∂2

t + ∆−m2)[k(φ(x)φ(0))− ω(φ(x)φ(0))]]

(2)
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Massless Case
Massive Case

We reformulate the two-point function of k with the help of
Poisson resummation.

Poisson Resummation

The Poisson resummation is given by:∑
n∈Z3

f (n) =
∑
m∈Z3

∫
f (n)e−im2πndn

where f is a function of a integer number n.

Then the two-point function looks like:

k(φ(x)φ(0)) =
∑
n∈Z3

ω(φ(x + 2πRn)φ(0))
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Massless Case
Massive Case

In the massless case, we then obtain:

k(: ρ :) =
∑

n∈Z3\{0}

− 2

(2π)4R4n4

this sum is convergent and we call it Γ1. Now we have the energy
density of the ground state, then we should find a homogeneous
and isotropic solution f of the Klein-Gordon equation whose
energy density satisfies the semi-classical Einstein equation.
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Massless Case
Massive Case

Einstein Tensor

On the flat torus spacetime we have no curvature, therefore:

Rµνρσ = 0, Gµν = 0

then the right hand side of semi-classical Einstein equation is zero.

For a homogeneous and isotropic solution which only depends on
t, we have:

ρ(f ) + k(: ρ :) =
1

2
(ḟ (t))2 + k(: ρ :) = 0

the solution for function f is:

f (t) = (−2Γ1)
1
2 t + c
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Massless Case
Massive Case

For the massive case, the normal ordered expectation value of
energy density is obtained analogously, but from the massive
two-point functions.

Again we use the Poisson resummation for the massive two-point
function of the ground state in 3D torus spacetime; then the
expectation value of the normal ordered energy density is given by:

k(: ρ :) = lim
x→0

[−1

2
(∂2

t + ∆−m2)
∑

n∈Z3\{0}

ω(φ(x + 2πRn)φ(0))]
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Massless Case
Massive Case

The massive two-point function

the two-point function of the vacuum state in the massive case is:

ω(φ(x)φ(0)) = lim
ε↓0

4m

(4π)2(σε(x , 0))
1
2

K1(m(σε(x , 0))
1
2 )

where σε(x , 0) is the half squared geodesic distance and K1 is a
modified Bessel function of order one.

Here we restrict to asymptotic case for which, mR � 1. The
modified Bessel function K1(x ′) behaves asymptotically as follows:

K1(x ′) ' e−x
′

[√
π

2

√
1

x ′
+ O

((
1

x ′

)3/2
)]
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Massless Case
Massive Case

After taking the derivatives and impose the limit, the normal
ordered expectation value of energy density looks like:

k(: ρ :) = −1
2

∑
n∈Z3\{0}

[
3
√

mπ/2

4π2
e−m((2πn1R)2+(2πn2R)2+(2πn3R)2)

1
2

((2πn1R)2+(2πn2R)2+(2πn3R)2)
7
4

+
m
√

mπ/2

2π2
e−m((2πn1R)2+(2πn2R)2+(2πn3R)2)

1
2

((2πn1R)2+(2πn2R)2+(2πn3R)2)
5
4

]
the result of this sum is convergent and we call it Γ2. Then the
semi-classical Einstein equation, after putting the last result in it,
is given by:

1

2
(ḟ 2 + m2f 2) + Γ2 =

Gµν
8πG

where the right hand side is equal to zero; then the proper
homogeneous solution f of Klein-Gordon equation is:

f =
(2|Γ2|)

1
2

m
sin(mt + c)
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States of Low Energy

States of low energy have been introduced by Olbermann and are
quasifree (Gaussian) homogeneous isotropic pure state whose
energy density ∆Eg smeared in time with a test function g is
minimal.

∆Eg :=

∫
dt g(t)2(ω(: ρ(t) :))
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On de Sitter spacetime we consider a state of low energy as the
generalised ground state and construct a coherent state w.r.t.
them.

We consider the massive case and for simplicity the case m2 = 2H2

(Degner).

The Klein-Gordon equation and Einstein tensor

The Klein-Gordon equation on de Sitter and with minimal coupling
is: (

∂2

∂t2
+ 3H

∂

∂t
+ m2

)
f = 0

The zero-zero component of Einstein tensor in de Sitter spacetime
is:

G00 = 3H2

where H is the Hubble parameter.
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Because the function f is a real solution of the Klein-Gordon
equation, we conclude that ρ(f (t)) > 0 for all t. But
limt→−∞ ωSLE (: ρ :) = +∞ (Degner) and thus we can conclude
that in the de Sitter spacetime there exists no solution for the
semi-classical Einstein equation with coherent states w.r.t states of
low energy for all t.
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The semi-classical Einstein equation in Robertson-Walker
spacetime is:

ωSLE (: ρ :) + ρ(f ) =
3H2

8πG
≡ 3m2

PH
2 (3)

where mP is the Planck mass and we put mP = 1.

The test function g , which is used to define the state of low energy
in this spacetime, is a Gaussian:

g(t) = e−
(t−t0)2

ε2
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If ε� 1
mp

, then the expectation value of the energy density
evaluated in the state of low energy is much smaller than the right
hand side of the relation (3), ωSLE (: ρ :)� 3m2

PH
2 (Degner,

Dappiaggi/Hack/Pinamonti).

Therefore we neglect it and try to find a homogeneous and
isotropic solution f of the Klein-Gordon equation which fulfils the
semi-classical Einstein equation alone.
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The Klein-Gordon Equation

The homogeneous and isotropic Klein-Gordon equation for
conformal coupling constant is:(

∂2
t + 3H∂t + m2 +

R

6

)
f (t) = 0 (4)

where R is the Ricci scalar, in Robertson-Walker spacetime
R = 6(Ḣ + 2H2).

The Energy Density

The energy density with conformal coupling constant is given by:

ρ(f (t)) = 1
2 ḟ

2(t) + 1
2 (m2 − H2)f 2(t) (5)

Reza Safari Coherent States and the Semi-Classical Einstein Equation



Introduction
Semi-Classical Einstein equation in 3D torus Spacetime

Solution for the Semi-Classical Einstein equation on de Sitter
Semi-Classical Einstein Equation on RW Spacetimes

Conclusions

We define h(t) := a(t)f (t) and change the time variable to a(t),
the scale factor, because do not know H explicitly as a function of
t in the general case. Then the semi-classical Einstein equation
and the Klein-Gordon equation become:

1

2
H2(∂ah)2 − H2

a
(∂ah)h +

m2

2a2
h2 = 3H2

[(a2H∂a)2 + m2a2]h = 0
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For the massless case the solution of Klein-Gordon equation
h(a(t)) is given by:

h(a(t)) =
√

6a sinh (c1 ± log(a(t)))

and the Hubble parameter is given by:

H(a(t)) =
c2

a3
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This resulting Hubble parameter is different from the observed one,
which is (with H(a)|a=1 =

√
3):

H2 =
Ωr

a4
+

Ωm

a3
+ ΩΛ

therefore we add the cosmological constant to the semi-classical
Einstein equation and calculate the Hubble parameter for the
massless case again.

The semi-classical Einstein equation with cosmological constant for
the massless case is:

1

2
H2(∂ah)2 − H2

a
(∂ah)h + ΩΛ = 3H2
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We solve the equation for the case a� 1, hence, the Hubble
parameter is in order of

√
ΩΛ. Then the Hubble parameter turns

out to be:

H2(a(t)) =
3

4

c2

a4
+ ΩΛ + O(a−8)
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The semi-classical Einstein equation has been solved properly
with a suitable coherent state for both massless and massive
scalar free fields in the 3D torus spacetime.

There exists no coherent state with respect to a state of low
energy in de Sitter spacetime which can solve the
semi-classical Einstein equation.

We solved the semi-classical Einstein equation on general RW
spacetimes with the classical energy density of the
Klein-Gordon solution.
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Thank you for your attention!
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