Effective Quantum Plane from Quantum Physics

Albert Much

Max Planck Institute for Mathematics in the Sciences, Leipzig Institute for Theoretical Physics, University of Leipzig

31st LQP Workshop, Leipzig

Outline

- Introduction
- Deformation of QM
- Deformation in QFT
 - Deforming QF with special conformal operator
- Conclusion and Outlook

Motivation for physics on quantized spacetime

- Four known fundamental interactions. Standard model unifies three interactions. Attempts to unify gravity with the SM failed ⇒ Quantum Gravity.
- Principles of QM+GRT: classical picture of spacetime breaks down near distances of the Planck length $\lambda_{Pl} = \left(\frac{G\hbar}{c^3}\right)^{1/2}$.

Moyal-Weyl plane \mathbb{R}^d_{θ}

Replace coordinates x^{μ} by self-adjoint operators \hat{x}^{μ} obeying

$$[\hat{x}^{\mu},\hat{x}^{\nu}]=i\theta^{\mu\nu}$$

⇒ Uncertainty relations:

$$\Delta x^0 \Delta x^i \ge \theta/2$$

Aims for the talk

• Obtain quantum plane from QM and QFT

Aims for the talk

Obtain quantum plane from QM and QFT

• Find interpretation from theory for the deformation constant

Outline

- Introduction
- Deformation of QM
- Deformation in QFT
 - Deforming QF with special conformal operator
- Conclusion and Outlook

Deformation with Warped Convolutions

$$X_{\mu}$$
 selfadjoint and abelian $[X_{\mu}, X_{\nu}] = 0$,

$$\Longrightarrow$$
 \exists strongly continuous unitary group $V(k):=e^{ik^{\mu}X_{\mu}}$

Buchholz, Lechner, Summers '10:

Definition of deformation

Let θ be a skew-symmetric matrix, then the warped convolution $A_{\theta,X}$ of $A \in C^{\infty}$ is

$$A_{\theta,X}\Phi:=(2\pi)^{-d}\int\int dy\,dk\;e^{-iyk}V(\theta y)(A)V(-\theta y)V(k)\Phi,\qquad \Phi\in\mathcal{D}\subset\mathcal{H}$$

Deforming the Hamiltonian with X_j

Free Hamiltonian:

$$H_0 = -P_j P^j / (2m)$$

Deformed Hamiltonian with warped convolutions

$$H_{\theta,X}\Psi = -\frac{1}{2m}(P_j + \theta_{jk}X^k)(P^j + \theta^{jr}X_r)\Psi = -\frac{1}{2m}P_j^{\theta,X}P_{\theta,X}^j\Psi$$

The deformed Energy Eigenvalues

Quantized energy values for fixed p_1 !

$$E_{\theta,n} = \frac{p_1^2}{2m} + \left(n + \frac{1}{2}\right)\frac{\theta}{m}, \qquad p_1 \in \mathbb{R}, n \in \mathbb{N}.$$

Landau levels

By setting $\theta = eB$ for deformed free Hamiltonian

Landau levels

By setting $\theta = eB$ for deformed free Hamiltonian

Zeemaneffect

Deformation of hydrogen atom Hamiltonian and for $\theta = eB$

Landau levels

By setting $\theta = eB$ for deformed free Hamiltonian

Zeemaneffect

Deformation of hydrogen atom Hamiltonian and for $\theta = eB$

Aharanov Bohm Effect

 H_0 deformed with $F_j(X)$ and $heta=-e\phi_M/2\pi$ induces AB gauge field

Landau levels

By setting $\theta = eB$ for deformed free Hamiltonian

Zeemaneffect

Deformation of hydrogen atom Hamiltonian and for $\theta = eB$

Aharanov Bohm Effect

 H_0 deformed with $F_i(X)$ and $\theta = -e\phi_M/2\pi$ induces AB gauge field

⇒ Obtain any gauge field!

Obtaining Groups from Warped Convolution

Magnetic Translation Group

Generators of MTG

$$W(a) = e^{ia^j\pi_j}$$

with canonical momentum operator $\pi_i = P_i - eA_i$ satisfying the CR

$$[\pi_i,\pi_j]=-i\mathsf{F}_{ij}.$$

Lemma

For $\theta_{ij} = -\frac{1}{2}F_{ij}$, the deformed generator of the Heisenberg-Weyl group $P_{\theta,X}^{j}$ is equal to the canonical momentum operator of the MTG π_{i} .

Quantum Plane from QM

In lowest LL motion described by $Q_i = X_i + (B^{-1})_{ik}P^k$,

$$\left[Q_i,Q_j\right]=2i(B^{-1})_{ij}.$$

 $\Longrightarrow Q_i$ spans quantum plane $\mathbb{R}^3_{2B^{-1}}$.

Lemma

 $X_i^{ heta,P}$ satisfies the commutation relations of the Moyal-Weyl plane $\mathbb{R}^3_{-2 heta},$

$$[X_i^{\theta,P},X_i^{\theta,P}]=-2i\theta_{ij}.$$

If $-\theta_{ij}$ is $(B^{-1})_{ij}$, then $X_i^{\theta,P}$ are equal to the guiding center coordinates Q_i .

⇒ Idea of lemma can be used in QFT!

Outline

- Introduction
- Deformation of QM
- Deformation in QFT
 - Deforming QF with special conformal operator
- Conclusion and Outlook

Outline

- Introduction
- Deformation of QM
- Deformation in QFT
 - Deforming QF with special conformal operator
- Conclusion and Outlook

Free scalar field

 ϕ obeys Klein Gordon Equation

$$\left(rac{\partial}{\partial x^{\mu}}rac{\partial}{\partial x_{\mu}}+m^{2}
ight)\!\phi_{0}(x)=0,$$

Solution:

$$\phi_0(x) = \int \left(e^{-ipx}a(\mathbf{p}) + e^{ipx}a^*(\mathbf{p})\right)d^3\mathbf{p}/2\omega_{\mathbf{p}}$$

where
$$\omega_{\mathbf{p}}=\sqrt{-p^{i}p_{i}+m^{2}}$$
 .

Quantum plane from warped convolutions

Doplicher, Fredenhagen and Roberts '01

Realized scalar QF on NC Minkowski spacetime, represented on $\mathscr{V} \otimes \mathscr{H}$.

Grosse and Lechner '07

Represented NC counterpart of scalar QF, on $\mathscr H$ instead of $\mathscr V\otimes\mathscr H.$

Buchholz, Summers '08

Introduced warped convolutions and obtained GL QF by deformation with P_{μ} .

⇒ Idea : Deform QF with FS operator to obtain quantum plane.

Special conformal operator K_{μ}

Commutation relations

$$\begin{split} [P_{\rho},K_{\mu}] &= 2i\left(\eta_{\rho\mu}D - M_{\rho\mu}\right), \qquad [K_{\rho},M_{\mu\nu}] = i\left(\eta_{\rho\mu}K_{\nu} - \eta_{\rho\nu}K_{\mu}\right), \\ [D,K_{\mu}] &= iK_{\mu}, \qquad [K_{\mu},K_{\nu}] = 0 \end{split}$$

Swieca, Völkel '76: Construct U_R in \mathcal{H}_1

$$K_{\mu} := U_{R}P_{\mu}U_{R}$$

 \Rightarrow \exists . str. cont. unitary group $U(b) := e^{ib^{\mu}K_{\mu}}$

Deformation with special conformal operator K_{μ} *

$$\phi_{\theta,K}(f)\Psi:=(2\pi)^{-d}\iint dy\,dk\; \mathrm{e}^{-\mathrm{i}yk}\,U(\theta y)\phi(f)U(-\theta y+k)\Psi,\qquad \Psi\in\mathcal{D}(K)$$

- Deformed field fulfills the same bounds as undeformed field
- $\phi_{\theta,K}(f)$ satisfies Reeh-Schlieder theorem but not covariance and locality

Covariance and locality replaced by modified versions!

* AM, J. Math. Phys. 53, 082303 (2012)

Wedge-covariance and wedge-locality

Deformed fields defined as QF's on wedge by using map $Q: W \mapsto Q(W)$

Wedge-covariance and wedge-locality of $\phi_{ heta,K}$

Lemma

The special conformal transformations $U_{\theta v}$, with $v \in spU$ and θ being admissible, map the right wedge into the right wedge $U_{\theta v}(W_1) \subset W_1$.

Theorem

The family of fields $\phi = \{\phi_W : W \in \mathcal{W}_0\}$ defined by the deformation with K_μ is wedge-covariant, w.r.t. Lorentz group. Furthermore, for n = 2l + 1, where $l \in \mathbb{N}_0$, the field ϕ is a wedge-local field on \mathscr{H} .

Quantum plane from deformation with K_{μ}

Lemma

Let the deformed product be defined by K_{μ} . Then the deformed commutator up to third order in θ is

$$\left[x_{\mu}\stackrel{\times_{\theta}}{,}x_{\nu}\right]=-2i\theta_{\mu\nu}x^{4}-4i\left((\theta x)_{\mu}x_{\nu}-(\theta x)_{\nu}x_{\mu}\right)x^{2}\equiv i\Theta_{\mu\nu}(x).$$

⇒ Nonconstant noncommutative spacetime.

Quantum plane from deformation with K_{μ}

$$[x_{\mu} \stackrel{\times_{\theta}}{,} x_{\nu}] = -2i\theta_{\mu\nu}x^4 - 4i\left((\theta x)_{\mu}x_{\nu} - (\theta x)_{\nu}x_{\mu}\right)x^2 \equiv i\Theta_{\mu\nu}(x).$$

Toymodel in 2 dimensions

Deformation of scalar field with operator R_{μ}

$$R_{\mu}:=(D,M_{01})$$

Proposition

The family of fields $\phi = \{\phi_W : W \in \mathcal{W}_0\}$ defined by the deformation with R_μ is wedge-local, but **not** wedge-covariant.

Outline

- Introduction
- Deformation of QM
- Deformation in QFT
 - Deforming QF with special conformal operator
- Conclusion and Outlook

Conclusion

•	From QM obtained physical effects and physical quantum plane by
	deformation

 Deformation with SCOP Wightman field with wedge-covariant and wedge-local properties

Quantum plane from SCOP deformation is nonconstant

Outlook

•	Obtain	Stark	effect	from	deform	nation
•	Obtain	Sidin	eneci	пош	ueioiii	ialion

Scattering for deformed QFT's

Deformation for Fermions and Gauge fields

• Generalize deformation to non Abelian groups

..

