Equivalence of the approaches to QFT at finite temperature in Minkowski spacetime

Falk Lindner

II. Institute for Theoretical Physics

University of Hamburg
23/11/2012

Outline

(1) The algebraic approach to perturbative QFT (pAQFT)
(2) Thermofield dynamics (TFD)
(3) The contour approach of Schwinger and Keldysh
4) Conclusion

The algebraic approach to perturbative QFT (pAQFT)

- Interplay between fields of
- algebraic approach (esp. QFT on CST)
- deformation quantization
- math integral annroach to perturbative QFT
- Here: M Minkowski spacetime, Field content: one real scalar field
- Starting point: Space of all configurations (resp. space of all histories)

$$
\varepsilon=C^{\infty}(M) \quad \longleftrightarrow \quad \text { off-sheil formalism }
$$

- Observables are smooth functionals of the configurations $C^{\infty}(\mathcal{E}) \ni A$:

$$
\frac{\delta^{n}}{\delta \phi^{n}} A(\phi) \equiv A^{(n)}(\phi) \in \varepsilon^{\prime}\left(M^{n}\right)
$$

The algebraic approach to perturbative QFT (pAQFT)

- Interplay between fields of
- algebraic approach (esp. QFT on CST)
- deformation quantization
- path integral approach to perturbative QFT
- Here: M Minkowski spacetime, Field content: one real scalar field
- Starting point: Space of all configurations (resp. space of all histories)

- Observables are smooth functional of the configurations $C^{\infty}(\mathcal{E}) \ni A$:

$$
\frac{\delta^{n}}{\delta \phi^{n}} A(\phi) \equiv A^{(n)}(\phi) \in \varepsilon^{\prime}\left(M^{n}\right)
$$

The algebraic approach to perturbative QFT (pAQFT)

- Interplay between fields of
- algebraic approach (esp. QFT on CST)
- deformation quantization
- path integral approach to perturbative QFT
- Here: M Minkowski spacetime, Field content: one real scalar field
- Starting point: Space of all configurations (resp. space of all histories)

- Observables are smooth functional of the configurations $C^{\infty}(\mathcal{E}) \ni A$:

The algebraic approach to perturbative QFT (pAQFT)

- Interplay between fields of
- algebraic approach (esp. QFT on CST)
- deformation quantization
- path integral approach to perturbative QFT
- Here: M Minkowski spacetime, Field content: one real scalar field
- Starting point: Space of all configurations (resp. space of all histories)

- Observables are smooth functionals of the configurations $C^{\infty}(\mathcal{E}) \ni A$:

The algebraic approach to perturbative QFT (pAQFT)

- Interplay between fields of
- algebraic approach (esp. QFT on CST)
- deformation quantization
- path integral approach to perturbative QFT
- Here: M Minkowski spacetime, Field content: one real scalar field
- Starting point: Space of all configurations (resp. space of all histories) $\mathcal{E}=C^{\infty}(M) \quad \longleftrightarrow \quad$ off-shell formalism
- Observables are smooth functionals of the configurations $C^{\infty}(\varepsilon) \ni A$:

The algebraic approach to perturbative QFT (pAQFT)

- Interplay between fields of
- algebraic approach (esp. QFT on CST)
- deformation quantization
- path integral approach to perturbative QFT
- Here: M Minkowski spacetime, Field content: one real scalar field
- Starting point: Space of all configurations (resp. space of all histories)

$$
\varepsilon=C^{\infty}(M) \quad \longleftrightarrow \quad \text { off-shell formalism }
$$

- Observables are smooth functionals of the configurations $C^{\infty}(\varepsilon) \ni A$:

The algebraic approach to perturbative QFT (pAQFT)

- Interplay between fields of
- algebraic approach (esp. QFT on CST)
- deformation quantization
- path integral approach to perturbative QFT
- Here: M Minkowski spacetime, Field content: one real scalar field
- Starting point: Space of all configurations (resp. space of all histories)

$$
\varepsilon=C^{\infty}(M) \quad \longleftrightarrow \quad \text { off-shell formalism }
$$

- Observables are smooth functionals of the configurations $C^{\infty}(\mathcal{E}) \ni A$:

$$
\frac{\delta^{n}}{\delta \phi^{n}} A(\phi) \equiv A^{(n)}(\phi) \in \mathcal{E}^{\prime}\left(M^{n}\right)
$$

Algebra of local observables

Classical Algebra $\mathcal{A}_{\text {cl }}$

The space \mathcal{F} of smooth, compactly supported functionals $A \in C^{\infty}(\mathcal{E})$, such that

$$
\mathrm{WF} \frac{\delta^{n}}{\delta \phi^{n}} A(\phi) \subset\left\{\left(x_{1}, \ldots, x_{n}, k_{1}, \ldots, k_{n}\right) \in \dot{T} M^{n}: \sum_{i=1}^{n} k_{i}=0\right\}
$$

constitutes a commutative algebra with the pointwise product $(A \cdot B)(\phi)=A(\phi) B(\phi)$ which is called $\mathcal{A}_{\mathrm{cl}}=(\mathcal{F}, \cdot)$.

- can be equipped with a Poisson bracket $\{\cdot, \cdot\}$
- fulfills $\{A, B\}=0$ if supp A spacelike separated from supp B

Algebra of local observables

Classical Algebra $\mathcal{A}_{\text {cl }}$

The space \mathcal{F} of smooth, compactly supported functionals $A \in C^{\infty}(\mathcal{E})$, such that

$$
\mathrm{WF} \frac{\delta^{n}}{\delta \phi^{n}} A(\phi) \subset\left\{\left(x_{1}, \ldots, x_{n}, k_{1}, \ldots, k_{n}\right) \in \dot{T} M^{n}: \sum_{i=1}^{n} k_{i}=0\right\}
$$

constitutes a commutative algebra with the pointwise product $(A \cdot B)(\phi)=A(\phi) B(\phi)$ which is called $\mathcal{A}_{\mathrm{cl}}=(\mathcal{F}, \cdot)$.

- can be equipped with a Poisson bracket $\{\cdot, \cdot\}$
- fulfills $\{A, B\}=0$ if supp A spacelike separated from supp B

Algebra of local observables

Classical Algebra $\mathcal{A}_{\text {cl }}$

The space \mathcal{F} of smooth, compactly supported functionals $A \in C^{\infty}(\mathcal{E})$, such that

$$
\mathrm{WF} \frac{\delta^{n}}{\delta \phi^{n}} A(\phi) \subset\left\{\left(x_{1}, \ldots, x_{n}, k_{1}, \ldots, k_{n}\right) \in \dot{T} M^{n}: \sum_{i=1}^{n} k_{i}=0\right\}
$$

constitutes a commutative algebra with the pointwise product $(A \cdot B)(\phi)=A(\phi) B(\phi)$ which is called $\mathcal{A}_{\mathrm{cl}}=(\mathcal{F}, \cdot)$.

- can be equipped with a Poisson bracket $\{\cdot, \cdot\}$
- fulfills $\{A, B\}=0$ if supp A spacelike separated from supp B

Idea of deformation quantization: Consider $\mathcal{F}[[\hbar]]$ with a non-commutative, associative product \star given by

H is a bi-distribution of Hadamard-form

Algebra
 The snace $\mathcal{F}[[\hbar]]$ forms a *-algebra with $*$, which is the algebra of observables $\mathcal{A}=(\mathcal{F}[[\hbar]], \star)$.

Idea of deformation quantization: Consider $\mathcal{F}[[\hbar]]$ with a non-commutative, associative product \star given by

$$
\begin{aligned}
A \star B & =A \cdot B+\sum_{n=1}^{\infty} \frac{\hbar^{n}}{n!} \Gamma^{n}(A \otimes B) \\
\Gamma & =\int \mathrm{d} x \mathrm{~d} y H(x, y) \frac{\delta}{\delta \phi(x)} \otimes \frac{\delta}{\delta \phi(y)}
\end{aligned}
$$

H is a bi-distribution of Hadamard-form

Algebra
 The space $\mathcal{F}[[h]]$ forms a *-algebra with $*$, which is the algebra of observables $\mathcal{A}=(\mathcal{F}[\hbar \hbar]$, , $)$

Idea of deformation quantization: Consider $\mathcal{F}[[\hbar]]$ with a non-commutative, associative product \star given by

$$
\begin{aligned}
A \star B & =A \cdot B+\sum_{n=1}^{\infty} \frac{\hbar^{n}}{n!} \Gamma^{n}(A \otimes B) \\
\Gamma & =\int \mathrm{d} x \mathrm{~d} y H(x, y) \frac{\delta}{\delta \phi(x)} \otimes \frac{\delta}{\delta \phi(y)}
\end{aligned}
$$

H is a bi-distribution of Hadamard-form

[^0]Idea of deformation quantization: Consider $\mathcal{F}[[\hbar]]$ with a non-commutative, associative product \star given by

$$
\begin{aligned}
A \star B & =A \cdot B+\sum_{n=1}^{\infty} \frac{\hbar^{n}}{n!} \Gamma^{n}(A \otimes B) \\
\Gamma & =\int \mathrm{d} x \mathrm{~d} y H(x, y) \frac{\delta}{\delta \phi(x)} \otimes \frac{\delta}{\delta \phi(y)} \quad \longleftrightarrow \quad \text { gen. Wick's theorem }
\end{aligned}
$$

H is a bi-distribution of Hadamard-form

Algebra \mathcal{A}

The space $\mathcal{F}[[\hbar]]$ forms a *-algebra with \star, which is the algebra of observables $\mathcal{A}=(\mathcal{F}[[\hbar]], \star)$.

- $H(x, y)-H(y, x)=\Delta(x, y)$, then $[A, B]_{\star}=0$ if supp $\left.A\right\rangle\langle\operatorname{supp} B$

Idea of deformation quantization: Consider $\mathcal{F}[[\hbar]]$ with a non-commutative, associative product \star given by

$$
\begin{aligned}
A \star B & =A \cdot B+\sum_{n=1}^{\infty} \frac{\hbar^{n}}{n!} \Gamma^{n}(A \otimes B) \\
\Gamma & =\int \mathrm{d} x \mathrm{~d} y H(x, y) \frac{\delta}{\delta \phi(x)} \otimes \frac{\delta}{\delta \phi(y)} \quad \longleftrightarrow \quad \text { gen. Wick's theorem }
\end{aligned}
$$

H is a bi-distribution of Hadamard-form

Algebra \mathcal{A}

The space $\mathcal{F}[[\hbar]]$ forms a *-algebra with \star, which is the algebra of observables $\mathcal{A}=(\mathcal{F}[[\hbar]], \star)$.

- $H(x, y)-H(y, x)=\Delta(x, y)$, then $[A, B]_{\star}=0$ if supp $\left.A\right\rangle\langle\operatorname{supp} B$
- \mathcal{A} is independent of the choice of H
- A can be represented as the algebra of Wick polynomials on the Fock space of the scalar field (generated by

Idea of deformation quantization: Consider $\mathcal{F}[[\hbar]]$ with a non-commutative, associative product \star given by

$$
\begin{aligned}
A \star B & =A \cdot B+\sum_{n=1}^{\infty} \frac{\hbar^{n}}{n!} \Gamma^{n}(A \otimes B) \\
\Gamma & =\int \mathrm{d} x \mathrm{~d} y H(x, y) \frac{\delta}{\delta \phi(x)} \otimes \frac{\delta}{\delta \phi(y)} \quad \longleftrightarrow \quad \text { gen. Wick's theorem }
\end{aligned}
$$

H is a bi-distribution of Hadamard-form

Algebra \mathcal{A}

The space $\mathcal{F}[[\hbar]]$ forms a *-algebra with \star, which is the algebra of observables $\mathcal{A}=(\mathcal{F}[[\hbar]], \star)$.

- $H(x, y)-H(y, x)=\Delta(x, y)$, then $[A, B]_{\star}=0$ if supp $\left.A\right\rangle\langle\operatorname{supp} B$
- \mathcal{A} is independent of the choice of H
- \mathcal{A} can be represented as the algebra of Wick polynomials on the Fock space of the scalar field (generated by H) if we go on-shell

Perturbation theory

Interaction

Let V be an local interaction functional of the form

$$
V(\phi)=\frac{1}{n} \int \mathrm{~d} x g(x) \phi(x)^{n}, \quad g \in \mathcal{D}(M), \quad g=1 \text { on } \mathcal{O} \subset M
$$

inducing interacting field equations $P \phi+\phi^{n-1}=0$ on \mathcal{O}.

Retarded operators

We construct a linear map R_{V} on \mathcal{A} with the properties

$$
\begin{aligned}
& \text { - } R_{V}\left(P \Phi_{f}+\Phi_{f}^{n-1}\right)=P \Phi_{f} \text { on } \mathcal{O} \\
& \text { - } R_{V_{1}+V_{2}}(A)=R_{V_{1}}(A) \text { if } \operatorname{supp}\left(V_{2}\right) \text { is later than } \operatorname{supp}(A)
\end{aligned}
$$

Perturbation theory

Interaction

Let V be an local interaction functional of the form

$$
V(\phi)=\frac{1}{n} \int \mathrm{~d} x g(x) \phi(x)^{n}, \quad g \in \mathcal{D}(M), \quad g=1 \text { on } \mathcal{O} \subset M
$$

inducing interacting field equations $P \phi+\phi^{n-1}=0$ on \mathcal{O}.

Retarded operators

We construct a linear map R_{V} on \mathcal{A} with the properties

- $R_{V}\left(P \Phi_{f}+\Phi_{f}^{n-1}\right)=P \Phi_{f}$ on \mathcal{O}
- $R_{V_{1}+V_{2}}(A)=R_{V_{1}}(A)$ if $\operatorname{supp}\left(V_{2}\right)$ is later than $\operatorname{supp}(A)$

Causal perturbation theory

Define inductively (in \hbar) a time-ordered product for local functionals

$$
A \cdot{ }_{\mathcal{T}} B=\sum_{n=0}^{\infty} \frac{\hbar^{n}}{n!} \Gamma_{F}^{n}(A \otimes B)= \begin{cases}A \star B & \operatorname{supp}(A) \text { later than } \operatorname{supp}(B) \\ B \star A & \operatorname{supp}(B) \text { later than } \operatorname{supp}(A)\end{cases}
$$

where in Γ_{F}, H is replaced by $H_{F}=H+i \Delta_{A}$.
Up to order \hbar^{n} this amounts to extending the distributions ${ }^{a}$

$$
\mathcal{D}^{\prime}\left(M^{k} \backslash\{0\}\right) \ni \check{H}_{F}^{k} \rightarrow H_{F}^{k} \in \mathcal{D}^{\prime}\left(M^{k}\right), \quad k=1, \ldots, n
$$

${ }^{\text {a }}$ The extension is ambiguous \leftrightarrow renormalization freedom
\square

Causal perturbation theory

Define inductively (in \hbar) a time-ordered product for local functionals

$$
A \cdot{ }_{\mathcal{T}} B=\sum_{n=0}^{\infty} \frac{\hbar^{n}}{n!} \Gamma_{F}^{n}(A \otimes B)= \begin{cases}A \star B & \operatorname{supp}(A) \text { later than } \operatorname{supp}(B) \\ B \star A & \operatorname{supp}(B) \text { later than } \operatorname{supp}(A)\end{cases}
$$

where in Γ_{F}, H is replaced by $H_{F}=H+i \Delta_{A}$.
Up to order \hbar^{n} this amounts to extending the distributions ${ }^{a}$

$$
\mathcal{D}^{\prime}\left(M^{k} \backslash\{0\}\right) \ni \check{H}_{F}^{k} \rightarrow H_{F}^{k} \in \mathcal{D}^{\prime}\left(M^{k}\right), \quad k=1, \ldots, n
$$

${ }^{\text {a }}$ The extension is ambiguous \leftrightarrow renormalization freedom
\square

Causal perturbation theory

Define inductively (in \hbar) a time-ordered product for local functionals

$$
A \cdot{ }_{\mathcal{T}} B=\sum_{n=0}^{\infty} \frac{\hbar^{n}}{n!} \Gamma_{F}^{n}(A \otimes B)= \begin{cases}A \star B & \operatorname{supp}(A) \text { later than } \operatorname{supp}(B) \\ B \star A & \operatorname{supp}(B) \text { later than } \operatorname{supp}(A)\end{cases}
$$

where in Γ_{F}, H is replaced by $H_{F}=H+i \Delta_{A}$.
Up to order \hbar^{n} this amounts to extending the distributions ${ }^{a}$

$$
\mathcal{D}^{\prime}\left(M^{k} \backslash\{0\}\right) \ni \check{H}_{F}^{k} \rightarrow H_{F}^{k} \in \mathcal{D}^{\prime}\left(M^{k}\right), \quad k=1, \ldots, n
$$

${ }^{\text {a }}$ The extension is ambiguous \leftrightarrow renormalization freedom

Then one can define the S-matrix $\mathcal{S}(V)=\mathrm{e}_{\cdot{ }_{\mathcal{T}}}^{i V}$ (up to \hbar^{n}) and:

$$
R_{V}(A)=S(V)^{\star-1} \star(S(V) \cdot \mathcal{T} A)
$$

Interacting theory

The algebra $\mathcal{A}_{V}(\mathcal{O})$, which is generated by the $R_{V}(A)$ with $A \in \mathcal{A}(\mathcal{O})$ is called the interacting algebra of observables. Its algebraic structure does not depend on the choice of g outside of \mathcal{O} and we obtain a net

$$
\mathcal{O} \longrightarrow \mathcal{A}_{V}(\mathcal{O})
$$

of interacting algebras and $\mathcal{A}_{V}=\lim _{\mathcal{O} \nearrow M} \mathcal{A}_{V}(\mathcal{O})$ adiabatic limit.

Generating functional for interacting time-ordered products Let $A_{f}, f \in \mathcal{D}(\mathcal{O})$ be a local field. The generating functional of the expectation values of interacting time-ordered products of A_{f} in a state ω is given by

Interacting theory

The algebra $\mathcal{A}_{V}(\mathcal{O})$, which is generated by the $R_{V}(A)$ with $A \in \mathcal{A}(\mathcal{O})$ is called the interacting algebra of observables. Its algebraic structure does not depend on the choice of g outside of \mathcal{O} and we obtain a net

$$
\mathcal{O} \longrightarrow \mathcal{A}_{V}(\mathcal{O})
$$

of interacting algebras and $\mathcal{A}_{V}=\lim _{\mathcal{O} \nearrow M} \mathcal{A}_{V}(\mathcal{O})$ adiabatic limit.

Generating functional for interacting time-ordered products

Let $A_{f}, f \in \mathcal{D}(\mathcal{O})$ be a local field. The generating functional of the expectation values of interacting time-ordered products of A_{f} in a state ω is given by

$$
Z(f)=\omega\left(\mathcal{S}(V)^{\star-1} \star \mathcal{S}\left(V+A_{f}\right)\right)
$$

Motivation to extend the formalism

Vacuum sector

Let ω be the vacuum state of the free theory. Then ω translates to a state on $\mathcal{A}_{V}(\mathcal{O})$, which exists in the adiabatic limit and fulfills

$$
Z(f) \xrightarrow{\text { a.l. }} \frac{\omega\left(\mathcal{S}\left(V+A_{f}\right)\right)}{\omega(\mathcal{S}(V))}
$$

in the sense of generating functionals: Gell-Mann and Low formula.

$$
\begin{aligned}
& \text { Finite temperature } \\
& \text { Let } \omega_{\beta} \text { be the } \mathrm{KMS} \text {-state of the free theory. }
\end{aligned}
$$

Motivation to extend the formalism

Vacuum sector

Let ω be the vacuum state of the free theory. Then ω translates to a state on $\mathcal{A}_{V}(\mathcal{O})$, which exists in the adiabatic limit and fulfills

$$
Z(f) \xrightarrow{\text { a.l. }} \frac{\omega\left(\mathcal{S}\left(V+A_{f}\right)\right)}{\omega(\mathcal{S}(V))}
$$

in the sense of generating functionals: Gell-Mann and Low formula.

Finite temperature

Let ω_{β} be the KMS-state of the free theory.

- ω_{β} translates to some state on $\mathcal{A}_{V}(\mathcal{O})$: adiabatic limit: unknown
- similar factorization not expected since, spectrum condition was crucial \rightarrow Ansatz: modify theory

Motivation to extend the formalism

Vacuum sector

Let ω be the vacuum state of the free theory. Then ω translates to a state on $\mathcal{A}_{V}(\mathcal{O})$, which exists in the adiabatic limit and fulfills

$$
Z(f) \xrightarrow{\text { a.l. }} \frac{\omega\left(\mathcal{S}\left(V+A_{f}\right)\right)}{\omega(\mathcal{S}(V))}
$$

in the sense of generating functionals: Gell-Mann and Low formula.

Finite temperature

Let ω_{β} be the KMS-state of the free theory.

- ω_{β} translates to some state on $\mathcal{A}_{V}(\mathcal{O})$: adiabatic limit: unknown
- similar factorization not expected since, spectrum condition was crucial \rightarrow Ansatz: modify theory

Thermofield dynamics (TFD)

Main idea

Let \mathfrak{M} be the von-Neumann algebra associated to the scalar field ϕ_{f} with $f \in \mathcal{D}$ in the KMS -state ω_{β} and

For an (extended) interaction $\hat{V}=V-j(V) \in \mathfrak{B}$ we assume to get

$$
Z(f) \xrightarrow{\text { a.l. }} \omega_{B}\left(S_{\mathfrak{B}}\left(\hat{V}+A_{f}\right)\right)=Z_{B}(f)
$$

Thermofield dynamics (TFD)

Main idea

Let \mathfrak{M} be the von-Neumann algebra associated to the scalar field ϕ_{f} with $f \in \mathcal{D}$ in the KMS-state ω_{β} and

- $j(A)=J A J$ the modular conjugation, obtained by Tomita-Takesaki theory
- \mathfrak{B} the *-algebra generated by \mathfrak{N} and $j(\mathfrak{M}) \cong \mathfrak{N}^{\prime}$

For an (extended) interaction $\hat{V}=V-j(V) \in \mathfrak{B}$ we assume to get

$$
Z(f) \xrightarrow{\text { a.! }} \omega_{B}\left(S_{\mathfrak{B}}\left(\hat{V}+A_{f}\right)\right)=Z_{\mathcal{B}}(f)
$$

Thermofield dynamics (TFD)

Main idea

Let \mathfrak{M} be the von-Neumann algebra associated to the scalar field ϕ_{f} with $f \in \mathcal{D}$ in the KMS-state ω_{β} and

- $j(A)=J A J$ the modular conjugation, obtained by Tomita-Takesaki theory
- \mathfrak{B} the *-algebra generated by \mathfrak{M} and $j(\mathfrak{M}) \cong \mathfrak{M}^{\prime}$

Thermofield dynamics (TFD)

Main idea

Let \mathfrak{M} be the von-Neumann algebra associated to the scalar field ϕ_{f} with $f \in \mathcal{D}$ in the KMS-state ω_{β} and

- $j(A)=J A J$ the modular conjugation, obtained by Tomita-Takesaki theory
- \mathfrak{B} the *-algebra generated by \mathfrak{M} and $j(\mathfrak{M}) \cong \mathfrak{M}^{\prime}$

Thermofield dynamics (TFD)

Main idea

Let \mathfrak{M} be the von-Neumann algebra associated to the scalar field ϕ_{f} with $f \in \mathcal{D}$ in the KMS -state ω_{β} and

- $j(A)=J A J$ the modular conjugation, obtained by Tomita-Takesaki theory
- \mathfrak{B} the *-algebra generated by \mathfrak{M} and $j(\mathfrak{M}) \cong \mathfrak{M}^{\prime}$

For an (extended) interaction $\hat{V}=V-j(V) \in \mathfrak{B}$ we assume to get

$$
Z(f) \xrightarrow{\text { a.l. }} \omega_{\beta}\left(\mathcal{S}_{\mathfrak{B}}\left(\hat{V}+A_{f}\right)\right)=Z_{\mathcal{B}}(f)
$$

for the KMS-state ω_{β}.

Realization in the pAQFT approach

Configuration space

Enlarge the field content: $\hat{\mathcal{E}}=\mathcal{E} \oplus \mathcal{E}$.

Enlarged algebra B

Define a \star-product on functionals in $\mathcal{F}(\hat{\varepsilon})[[\hbar]]$

where D_{+}^{β} is the KMS two-point functions of the scalar field.

Subalgebras \mathcal{B}_{1} and \mathcal{B}_{2}

Realization in the pAQFT approach

Configuration space

Enlarge the field content: $\hat{\mathcal{E}}=\mathcal{E} \oplus \mathcal{E}$.

Enlarged algebra \mathcal{B}

Define a \star-product on functionals in $\mathcal{F}(\hat{\mathcal{E}})[[\hbar]]$

$$
\boldsymbol{\Delta}_{+}(x, y)=\left(\begin{array}{cc}
D_{+}^{\beta}(x, y) & D_{+}^{\beta}(x, y+i \beta / 2) \\
D_{+}^{\beta}(x, y+i \beta / 2) & D_{+}^{\beta}(y, x)
\end{array}\right), \quad \beta=\frac{e^{0}}{k_{B} T}
$$

where D_{+}^{β} is the KMS two-point functions of the scalar field.
Subalgebras B_{1} and B_{2}

Realization in the pAQFT approach

Configuration space

Enlarge the field content: $\hat{\mathcal{E}}=\mathcal{E} \oplus \mathcal{E}$.

Enlarged algebra \mathcal{B}

Define a \star-product on functionals in $\mathcal{F}(\hat{\varepsilon})[[\hbar]]$

$$
\boldsymbol{\Delta}_{+}(x, y)=\left(\begin{array}{cc}
D_{+}^{\beta}(x, y) & D_{+}^{\beta}(x, y+i \beta / 2) \\
D_{+}^{\beta}(x, y+i \beta / 2) & D_{+}^{\beta}(y, x)
\end{array}\right), \quad \beta=\frac{e^{0}}{k_{B} T}
$$

where D_{+}^{β} is the KMS two-point functions of the scalar field.

Subalgebras \mathcal{B}_{1} and \mathcal{B}_{2}

$$
\mathcal{B}_{1}=\left\{A \in \mathcal{B}: \frac{\delta}{\delta \phi_{2}} A=0\right\}, \quad \mathcal{B}_{2}=\left\{A \in \mathcal{B}: \frac{\delta}{\delta \phi_{1}} A=0\right\}
$$

Generalized modular conjugation

Generalized modular conjugation

We define a map

$$
j: \mathcal{B} \rightarrow \mathcal{B}, \quad(j A)(\phi, \psi)=A^{*}(\psi, \phi), \quad j=j^{-1}
$$

Properties of B

Generalized modular conjugation

Generalized modular conjugation

We define a map

$$
j: \mathcal{B} \rightarrow \mathcal{B}, \quad(j A)(\phi, \psi)=A^{*}(\psi, \phi), \quad j=j^{-1}
$$

Properties of \mathcal{B}

- $\mathcal{B}_{1} \cong \mathcal{A}$
- $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]_{\star}=0$
- j is an automorphism on \mathcal{B}
- j is an isomorphism of \mathcal{B}_{1} with B_{2}

Generalized modular conjugation

Generalized modular conjugation

We define a map

$$
j: \mathcal{B} \rightarrow \mathcal{B}, \quad(j A)(\phi, \psi)=A^{*}(\psi, \phi), \quad j=j^{-1}
$$

Properties of \mathcal{B}

- $\mathcal{B}_{1} \cong \mathcal{A}$
- $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]_{\star}=0$
- j is an automorphism on \mathcal{B}
- j is an isomorphism of \mathcal{B}_{1} with \mathcal{B}_{2}

Generalized modular conjugation

Generalized modular conjugation

We define a map

$$
j: \mathcal{B} \rightarrow \mathcal{B}, \quad(j A)(\phi, \psi)=A^{*}(\psi, \phi), \quad j=j^{-1}
$$

Properties of \mathcal{B}

- $\mathcal{B}_{1} \cong \mathcal{A}$
- $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]_{\star}=0$
- j is an automorphism on \mathcal{B}
- j is an isomorphism of \mathcal{B}_{1} with \mathcal{B}_{2}

Generalized modular conjugation

Generalized modular conjugation

We define a map

$$
j: \mathcal{B} \rightarrow \mathcal{B}, \quad(j A)(\phi, \psi)=A^{*}(\psi, \phi), \quad j=j^{-1}
$$

Properties of \mathcal{B}

- $\mathcal{B}_{1} \cong \mathcal{A}$
- $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]_{\star}=0$
- j is an automorphism on \mathcal{B}
- j is an isomorphism of \mathcal{B}_{1} with \mathcal{B}_{2}

Perturbation theory

Time-ordered product

We introduce a time-ordered product $\cdot \mathcal{J}$ by a matrix-valued Feynman propagator

$$
\boldsymbol{\Delta}_{F}(x, y)=\left(\begin{array}{cc}
D_{F}^{\beta}(x, y) & D_{+}^{\beta}(x, y+i \beta / 2) \\
D_{+}^{\beta}(x, y+i \beta / 2) & D_{a F}^{\beta}(x, y)
\end{array}\right)
$$

where $D_{(a) F}^{\beta}$ is the (anti-) Feynman propagator for the KMS state.

S-Matrix

The S-Matrix $\mathcal{S}_{\mathcal{B}}(\hat{V})$ of the extended theory is given by the time-ordered exponential ${ }^{a}$

$$
\mathcal{S}_{\mathcal{B}}(\hat{V})=\exp _{\cdot \mathcal{J}}(i \hat{V}), \quad \hat{V}=V-j(V), \quad V \in \mathcal{B}_{1}
$$

Renormalization ambiguity is the same as the pAQFT case, cf. Δ_{F}

Perturbation theory

Time-ordered product

We introduce a time-ordered product $\cdot \mathcal{T}$ by a matrix-valued Feynman propagator

$$
\boldsymbol{\Delta}_{F}(x, y)=\left(\begin{array}{cc}
D_{F}^{\beta}(x, y) & D_{+}^{\beta}(x, y+i \beta / 2) \\
D_{+}^{\beta}(x, y+i \beta / 2) & D_{a F}^{\beta}(x, y)
\end{array}\right)
$$

where $D_{(a) F}^{\beta}$ is the (anti-) Feynman propagator for the KMS state.

S-Matrix

The S-Matrix $S_{\mathcal{B}}(\hat{V})$ of the extended theory is given by the time-ordered exponential ${ }^{\text {a }}$

$$
\mathcal{S}_{\mathcal{B}}(\hat{V})=\exp _{\cdot \mathcal{F}}(i \hat{V}), \quad \hat{V}=V-j(V), \quad V \in \mathcal{B}_{1}
$$

${ }^{\text {a }}$ Renormalization ambiguity is the same as the pAQFT case, cf. $\boldsymbol{\Delta}_{F}$

Equivalence

Interacting observables

The map $R_{\hat{V}}$ corresponding to $S_{\mathcal{B}}(\hat{V})$ in \mathcal{B} is given by

$$
\begin{aligned}
R_{\hat{V}}(A) & =\mathcal{S}_{\mathcal{B}}(\hat{V})^{\star-1} \star\left[\mathcal{S}_{\mathcal{B}}(\hat{V}) \cdot \mathcal{T}_{\mathcal{T}} A\right] \\
& =\left(e_{\cdot \mathcal{T}}^{i V}\right)^{\star-1} \star\left(j\left(e_{\cdot \mathcal{T}}^{i V}\right)\right)^{\star-1} \star\left[\left(e_{\cdot \mathcal{T}}^{i V} \star j\left(e_{\cdot \mathcal{T}}^{i V}\right)\right) \cdot \mathcal{T} A\right], \quad A \in \mathcal{B}
\end{aligned}
$$

If A is observable, namely $A \in \mathcal{B}_{1}$, we obtain

$$
\begin{aligned}
R_{\hat{V}}(A) & =\mathcal{S}_{\mathcal{B}}(V)^{\star-1} \star\left(\mathcal{S}_{\mathcal{B}}(V) \cdot \mathcal{T} A\right) \\
& =\left(e_{\cdot \mathcal{T}}^{i V}\right)^{\star-1} \star\left(e_{\cdot \mathcal{T}}^{i V} \cdot \mathcal{T} A\right) \in \mathcal{B}_{1}
\end{aligned}
$$

The algebra, generated by the interacting observables $R_{\hat{V}}\left(\mathcal{B}_{1}\right)$, coincides with the algebra of the pAQFT approach, which is generated by $R_{V}(\mathcal{A})$.

Equivalence

Interacting observables

The map $R_{\hat{V}}$ corresponding to $S_{\mathcal{B}}(\hat{V})$ in \mathcal{B} is given by

$$
\begin{aligned}
R_{\hat{V}}(A) & =\mathcal{S}_{\mathcal{B}}(\hat{V})^{\star-1} \star\left[S_{\mathcal{B}}(\hat{V}) \cdot \mathcal{T}_{\mathcal{T}} A\right] \\
& =\left(e_{\cdot \mathcal{T}}^{i V}\right)^{\star-1} \star\left(j\left(e_{\cdot \mathcal{T}}^{i V}\right)\right)^{\star-1} \star\left[\left(e_{\cdot \mathcal{T}}^{i V} \star j\left(e_{\cdot \mathcal{T}}^{i V}\right)\right) \cdot \mathcal{T} A\right], \quad A \in \mathcal{B}
\end{aligned}
$$

If A is observable, namely $A \in \mathcal{B}_{1}$, we obtain

$$
\begin{aligned}
R_{\hat{V}}(A) & =\mathcal{S}_{\mathcal{B}}(V)^{\star-1} \star\left(\mathcal{S}_{\mathcal{B}}(V) \cdot \mathcal{T} A\right) \\
& =\left(e_{\cdot \mathcal{T}}^{i V}\right)^{\star-1} \star\left(e_{\cdot \mathcal{T}}^{i V} \cdot \mathcal{T} A\right) \in \mathcal{B}_{1}
\end{aligned}
$$

The algebra, generated by the interacting observables $R_{\hat{V}}\left(\mathcal{B}_{1}\right)$, coincides with the algebra of the PAQFT approach, which is generated by $R_{V}(\mathcal{A})$.

Equivalence

Interacting observables

The map $R_{\hat{V}}$ corresponding to $S_{\mathcal{B}}(\hat{V})$ in \mathcal{B} is given by

$$
\begin{aligned}
R_{\hat{V}}(A) & =\mathcal{S}_{\mathcal{B}}(\hat{V})^{\star-1} \star\left[\mathcal{S}_{\mathcal{B}}(\hat{V}) \cdot \mathcal{T} A\right] \\
& =\left(e_{\cdot \mathcal{T}}^{i V}\right)^{\star-1} \star\left(j\left(e_{\cdot \mathcal{T}}^{i V}\right)\right)^{\star-1} \star\left[\left(e_{\cdot \mathcal{T}}^{i V} \star j\left(e_{\cdot \mathcal{T}}^{i V}\right)\right) \cdot \mathcal{T} A\right], \quad A \in \mathcal{B}
\end{aligned}
$$

If A is observable, namely $A \in \mathcal{B}_{1}$, we obtain

$$
\begin{aligned}
R_{\hat{V}}(A) & =\mathcal{S}_{\mathcal{B}}(V)^{\star-1} \star\left(\mathcal{S}_{\mathcal{B}}(V) \cdot \mathcal{T} A\right) \\
& =\left(e_{\cdot \cdot \mathcal{T}}^{i V}\right)^{\star-1} \star\left(e_{\cdot \mathcal{T}}^{i V} \cdot \mathcal{T} A\right) \in \mathcal{B}_{1}
\end{aligned}
$$

The algebra, generated by the interacting observables $R_{\hat{V}}\left(\mathcal{B}_{1}\right)$, coincides with the algebra of the pAQFT approach, which is generated by $R_{V}(\mathcal{A})$.

Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by R_{V} and $R_{\hat{V}}$ acting on $\mathcal{A}(\mathcal{O})$ coincide:
This approach does not help on deciding, whether ω_{β} translates to a KMS-state on \mathcal{A}_{V}.

Back to motivation
If, ω_{β} exists in the adiabatic limit and
on the interacting Hilbert space, then

$$
\begin{aligned}
Z_{\mathcal{B}}(f) & =\omega_{\beta}\left(S_{\mathcal{B}}\left(\hat{V}+A_{f}\right)\right)=\left\langle\Omega_{\beta}\right| j(S(V)) S\left(V+A_{f}\right)\left|\Omega_{\beta}\right\rangle \\
& \xrightarrow{\text { a.l. }}\left\langle\Omega_{\beta}\right| S(V)^{-1} \delta\left(V+A_{f}\right)\left|\Omega_{\beta}\right\rangle=Z(f)
\end{aligned}
$$

Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by R_{V} and $R_{\hat{V}}$ acting on $\mathcal{A}(\mathcal{O})$ coincide: This approach does not help on deciding, whether ω_{β} translates to a KMS-state on \mathcal{A}_{V}.

Back to motivation

If, ω_{β} exists in the adiabatic limit and

- $\mathcal{S}(V)\left|\Omega_{\beta}\right\rangle$ tends to a translation invariant vector
- j is implemented as the modular conjugation
on the interacting Hilbert space, then

Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by R_{V} and $R_{\hat{V}}$ acting on $\mathcal{A}(\mathcal{O})$ coincide: This approach does not help on deciding, whether ω_{β} translates to a KMS-state on \mathcal{A}_{V}.

Back to motivation

If, ω_{β} exists in the adiabatic limit and

- $\mathcal{S}(V)\left|\Omega_{\beta}\right\rangle$ tends to a translation invariant vector
- j is implemented as the modular conjugation
on the interacting Hilbert space, then

Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by R_{V} and $R_{\hat{V}}$ acting on $\mathcal{A}(\mathcal{O})$ coincide: This approach does not help on deciding, whether ω_{β} translates to a KMS-state on \mathcal{A}_{V}.

Back to motivation

If, ω_{β} exists in the adiabatic limit and

- $\mathcal{S}(V)\left|\Omega_{\beta}\right\rangle$ tends to a translation invariant vector
- j is implemented as the modular conjugation
on the interacting Hilbert space, then

Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by R_{V} and $R_{\hat{V}}$ acting on $\mathcal{A}(\mathcal{O})$ coincide: This approach does not help on deciding, whether ω_{β} translates to a KMS-state on \mathcal{A}_{V}.

Back to motivation

If, ω_{β} exists in the adiabatic limit and

- $\mathcal{S}(V)\left|\Omega_{\beta}\right\rangle$ tends to a translation invariant vector
- j is implemented as the modular conjugation on the interacting Hilbert space, then

$$
\begin{aligned}
Z_{\mathcal{B}}(f) & =\omega_{\beta}\left(\mathcal{S}_{\mathcal{B}}\left(\hat{V}+A_{f}\right)\right)=\left\langle\Omega_{\beta}\right| j(\mathcal{S}(V)) \mathcal{S}\left(V+A_{f}\right)\left|\Omega_{\beta}\right\rangle \\
& \xrightarrow{\text { a.l. }}\left\langle\Omega_{\beta}\right| \mathcal{S}(V)^{-1} \mathcal{S}\left(V+A_{f}\right)\left|\Omega_{\beta}\right\rangle=Z(f)
\end{aligned}
$$

The contour approach of Schwinger and Keldysh

Main idea

Accomplish the GML factorization by modifying the underlying spacetime:

$$
Z(f) \xrightarrow{\text { a.l. }} \omega_{\beta}\left(\mathcal{S}_{C}(V) \cdot \mathcal{p} A_{f}\right)=Z_{C}(f)
$$

where the $\cdot \mathcal{p}$ replaces time-ordering by path-ordering on some contour C in complexified Minkowski spacetime $\mathbb{C} \times \mathbb{R}^{3}$.

The contour C

Figure: The Schwinger-Keldysh contour C, where the limit $t_{0} \rightarrow \infty$ has to be taken.

Extension of the underlying spacetime

Spacetime defined by C

Denote by M_{C} the spacetime

$$
M_{C}=\bigcup_{i=1}^{4} \mathcal{I}_{i} \times \mathbb{R}^{3}, \quad \mathcal{I}_{i} \subseteq \mathbb{R}
$$

where the \mathcal{I}_{i} are the parameter spaces of the individual contour pieces C_{i}.
Configuration space
Define the configuration space $\phi \in \mathcal{E}\left(M_{C}\right) \cong \bigoplus_{i=1}^{4} \mathcal{E}\left(M_{C_{i}}\right)$, such that

Extension of the underlying spacetime

Spacetime defined by C

Denote by M_{C} the spacetime

$$
M_{C}=\bigcup_{i=1}^{4} \mathcal{I}_{i} \times \mathbb{R}^{3}, \quad \mathcal{I}_{i} \subseteq \mathbb{R}
$$

where the \mathcal{I}_{i} are the parameter spaces of the individual contour pieces C_{i}.

Configuration space

Define the configuration space $\phi \in \mathcal{E}\left(M_{C}\right) \cong \bigoplus_{i=1}^{4} \mathcal{E}\left(M_{C_{i}}\right)$, such that

$$
\phi(\tau, \mathbf{x})=\left(\phi_{1}\left(\tau_{1}, \mathbf{x}\right), \ldots, \phi_{4}\left(\tau_{4}, \mathbf{x}\right)\right), \quad \operatorname{supp} \phi_{i} \subset M_{C_{i}}, \tau_{i} \in \mathcal{I}_{i}
$$

Factorization

*-product, •p-product

Denote a parametrization of C by $\tau \mapsto C^{i}(\tau)$. Define \star and $\cdot \mathcal{P}$ for functionals on $\mathcal{E}\left(M_{C}\right)$ by the (4×4)-matrix-valued distributions

$$
\boldsymbol{\Delta}_{\bullet}^{i j}\left(\tau, \tau^{\prime}\right)=\lim _{t_{0} \rightarrow \infty}\left\{\begin{array}{ll}
D_{+}^{\beta}\left(C^{i}(\tau)-C^{j}\left(\tau^{\prime}\right)\right) & i>j \\
D_{-}^{\beta}\left(C^{i}(\tau)-C^{j}\left(\tau^{\prime}\right)\right) & i<j, \\
D_{\bullet}^{\beta}\left(C^{i}(\tau)-C^{i}\left(\tau^{\prime}\right)\right) & i=j
\end{array} \quad \bullet \in\{F,+\}\right.
$$

where $D_{F /+}^{\beta}$ is the KMS Feynman propagator (two-point function).

Theorem

All matrix elements of $\Delta_{+/ F}$, which explicitly depend on t_{0} vanish uniformly in the limit $t_{0} \rightarrow \infty$.

Factorization

*-product, •p-product

Denote a parametrization of C by $\tau \mapsto C^{i}(\tau)$. Define \star and $\cdot \mathcal{P}$ for functionals on $\mathcal{E}\left(M_{C}\right)$ by the (4×4)-matrix-valued distributions

$$
\boldsymbol{\Delta}_{\bullet}^{i j}\left(\tau, \tau^{\prime}\right)=\lim _{t_{0} \rightarrow \infty}\left\{\begin{array}{ll}
D_{+}^{\beta}\left(C^{i}(\tau)-C^{j}\left(\tau^{\prime}\right)\right) & i>j \\
D_{-}^{\beta}\left(C^{i}(\tau)-C^{j}\left(\tau^{\prime}\right)\right) & i<j, \\
D_{\bullet}^{\beta}\left(C^{i}(\tau)-C^{i}\left(\tau^{\prime}\right)\right) & i=j
\end{array}, \quad \bullet \in\{F,+\}\right.
$$

where $D_{F /+}^{\beta}$ is the KMS Feynman propagator (two-point function).

Theorem

All matrix elements of $\boldsymbol{\Delta}_{+/ F}$, which explicitly depend on t_{0} vanish uniformly in the limit $t_{0} \rightarrow \infty$.

Equivalence of SK and TFD

Explicitly we obtain

$$
\boldsymbol{\Delta}_{+}=\left(\begin{array}{cccc}
D_{+}^{\beta} & 0 & \tilde{D}_{+}^{\beta} & 0 \\
0 & E_{+}^{\beta} & 0 & 0 \\
\tilde{D}_{+}^{\beta} & 0 & D_{-}^{\beta} & 0 \\
0 & 0 & 0 & E_{+}^{\beta}
\end{array}\right) \quad \begin{array}{ll}
\tilde{D}_{+}^{\beta}(t, 0)=D_{+}^{\beta}(t+i \beta / 2) & t \in \mathbb{R} \\
D_{-}^{\beta}(t, 0)=D_{+}^{\beta}(-t) & \\
E_{+}^{\beta}(\tau, 0)=D_{+}^{\beta}(-i \tau) & \tau \in\left[0, \frac{\beta}{2}\right]
\end{array}
$$

Isomorphic algebra

The subalgebra

is isomorphic to the algebra \mathcal{B} of TFD

Equivalence of SK and TFD

Explicitly we obtain

$$
\boldsymbol{\Delta}_{+}=\left(\begin{array}{cccc}
D_{+}^{\beta} & 0 & \tilde{D}_{+}^{\beta} & 0 \\
0 & E_{+}^{\beta} & 0 & 0 \\
\tilde{D}_{+}^{\beta} & 0 & D_{-}^{\beta} & 0 \\
0 & 0 & 0 & E_{+}^{\beta}
\end{array}\right) \quad \begin{array}{ll}
\tilde{D}_{+}^{\beta}(t, 0)=D_{+}^{\beta}(t+i \beta / 2) & t \in \mathbb{R} \\
D_{-}^{\beta}(t, 0)=D_{+}^{\beta}(-t) & \\
E_{+}^{\beta}(\tau, 0)=D_{+}^{\beta}(-i \tau) & \tau \in\left[0, \frac{\beta}{2}\right]
\end{array}
$$

Isomorphic algebra

The subalgebra

$$
\mathcal{A}_{13}=\left\{A \in \mathcal{A}_{C}: \frac{\delta}{\delta \phi_{2}} A(\phi)=0=\frac{\delta}{\delta \phi_{4}} A(\phi)\right\}
$$

is isomorphic to the algebra \mathcal{B} of TFD.

- \mathcal{P}-ordered exponential

The S-matrix of theory is derived as the path-ordered exponential

$$
\mathcal{S}_{C}(\bar{V})=\exp _{\cdot p}(i \bar{V})=\exp _{\cdot \mathfrak{p}}\left(i\left(V_{1}+V_{3}\right)\right) \cdot \exp _{\cdot p}\left(i V_{2}\right) \cdot \exp _{\cdot p}\left(i V_{4}\right)
$$ for an interaction $\bar{V}=\sum V_{i}$, supp $V_{i} \subset M_{C_{i}}$.

Interacting observables
 The associated retarded operator R_{V} to S_{C} for an observable A is given by $R_{\bar{V}}(A)=S_{C}(\bar{V})^{-1} \star\left(S_{C}(\bar{V}) \cdot \rho A\right)=S_{C}\left(V_{1}\right)^{*-1} \star\left(S_{C}\left(V_{1}\right) \cdot \rho A\right)$

Gell-Mann and Low factorization

where $K=\omega_{\beta}\left(S_{C}\left(V_{2}\right)\right) \omega_{\beta}\left(S_{C}\left(V_{4}\right)\right)$

$\cdot \mathfrak{p}$-ordered exponential

The S-matrix of theory is derived as the path-ordered exponential

$$
\mathcal{S}_{C}(\bar{V})=\exp _{\cdot p}(i \bar{V})=\exp _{\cdot p}\left(i\left(V_{1}+V_{3}\right)\right) \cdot \exp _{\cdot \mathfrak{p}}\left(i V_{2}\right) \cdot \exp _{\cdot \mathfrak{p}}\left(i V_{4}\right)
$$

for an interaction $\bar{V}=\sum V_{i}$, supp $V_{i} \subset M_{C_{i}}$.

Interacting observables

The associated retarded operator R_{V} to S_{C} for an observable A is given by

$$
R_{\bar{V}}(A)=\mathcal{S}_{C}(\bar{V})^{-1} \star\left(\mathcal{S}_{C}(\bar{V}) \cdot \mathcal{P} A\right)=\mathcal{S}_{C}\left(V_{1}\right)^{\star-1} \star\left(\mathcal{S}_{C}\left(V_{1}\right) \cdot \mathfrak{p} A\right)
$$

Gell-Mann and Low factorization
$Z_{C}(f)=\omega_{\beta}\left(\mathcal{S}_{C}\left(\bar{V}+A_{f}\right)\right)=K \underbrace{\omega_{\beta}\left(\mathcal{S}_{C}\left(V_{3}\right) \cdot \mathcal{P} \mathcal{S}_{C}\left(V_{1}+A_{f}\right)\right)}$
\square

- \mathcal{P}-ordered exponential

The S-matrix of theory is derived as the path-ordered exponential

$$
\mathcal{S}_{C}(\bar{V})=\exp _{\cdot \mathfrak{p}}(i \bar{V})=\exp _{\cdot \mathfrak{p}}\left(i\left(V_{1}+V_{3}\right)\right) \cdot \exp _{\cdot \mathfrak{p}}\left(i V_{2}\right) \cdot \exp _{\cdot \mathfrak{p}}\left(i V_{4}\right)
$$

for an interaction $\bar{V}=\sum V_{i}$, supp $V_{i} \subset M_{C_{i}}$.

Interacting observables

The associated retarded operator R_{V} to S_{C} for an observable A is given by

$$
R_{\bar{V}}(A)=\mathcal{S}_{C}(\bar{V})^{-1} \star\left(\mathcal{S}_{C}(\bar{V}) \cdot \mathcal{P} A\right)=\mathcal{S}_{C}\left(V_{1}\right)^{\star-1} \star\left(\mathcal{S}_{C}\left(V_{1}\right) \cdot \mathfrak{p} A\right)
$$

Gell-Mann and Low factorization

$$
Z_{C}(f)=\omega_{\beta}\left(\mathcal{S}_{C}\left(\bar{V}+A_{f}\right)\right)=K \underbrace{\omega_{\beta}\left(\mathcal{S}_{C}\left(V_{3}\right) \cdot \mathcal{P} \mathcal{S}_{C}\left(V_{1}+A_{f}\right)\right)}_{Z_{\mathcal{B}}(f)}
$$

where $K=\omega_{\beta}\left(\mathcal{S}_{C}\left(V_{2}\right)\right) \omega_{\beta}\left(\mathcal{S}_{C}\left(V_{4}\right)\right)$

Conclusion

- provided a state-independent framework for perturbative QFT (pAQFT)
- main problem: Existence of a KMS-state
- construction of TFD and the SK-contour approach as extensions of pAQFT
- suggested, that a Gell-Mann and Low type of factorization for the generating functionals $Z(f)$ may be valid, if the KMS state exists

Conclusion

- provided a state-independent framework for perturbative QFT (pAQFT)
- main problem: Existence of a KMS-state
- construction of TFD and the SK-contour approach as extensions of pAQFT
- suggested, that a Gell-Mann and Low type of factorization for the generating functionals $Z(f)$ may be valid, if the KMS state exists

Conclusion

- provided a state-independent framework for perturbative QFT (pAQFT)
- main problem: Existence of a KMS-state
- construction of TFD and the SK-contour approach as extensions of pAQFT
- suggested, that a Gell-Mann and Low type of factorization for the generating functionals $Z(f)$ may be valid, if the KMS state exists

Conclusion

- provided a state-independent framework for perturbative QFT (pAQFT)
- main problem: Existence of a KMS-state
- construction of TFD and the SK-contour approach as extensions of pAQFT
- suggested, that a Gell-Mann and Low type of factorization for the generating functionals $Z(f)$ may be valid, if the KMS state exists

[^0]: Algebra
 The space $\mathcal{F}[[\hbar]]$ forms a *-algebra with \star, which is the algebra of observables $\mathcal{A}=(\mathcal{F}[[\hbar]], \star)$.

