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The algebraic approach to perturbative QFT (pAQFT)

Interplay between fields of
o algebraic approach (esp. QFT on CST)
o deformation quantization
e path integral approach to perturbative QFT

Here: M Minkowski spacetime, Field content: one real scalar field

Starting point: Space of all configurations (resp. space of all histories)

&E=C®(M) <+— off-shell formalism

Observables are smooth functionals of the configurations C*>°(&) > A:
5”
opn

A() = A (¢) € &'(M")
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Algebra of local observables

Classical Algebra A

The space F of smooth, compactly supported functionals A € C*(¢€),
such that

5”

WF5¢"

A(p) C {(xl,...,x,,,kl,...,k,,)e TI\/I”:Zk,-:O}

i=1

constitutes a commutative algebra with the pointwise product

(A- B)(¢) = A(¢)B(¢) which is called Ay = (F,-).
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Algebra of local observables

Classical Algebra A

The space F of smooth, compactly supported functionals A € C*(¢€),
such that

5”

WF5¢"

A(p) C {(xl,...,x,,,kl,...,k,,)e TI\/I”:Zk,-:O}

i=1

constitutes a commutative algebra with the pointwise product

(A- B)(¢) = A(¢)B(¢) which is called Ay = (F,-).

@ can be equipped with a Poisson bracket {-,-}

o fulfills {A, B} = 0 if supp A spacelike separated from supp B
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Idea of deformation quantization: Consider F[[A]] with a
non-commutative, associative product x given by

(o ¢] h”
A*B:A-B+ZFF”(A®B)
n=1

o o0
5(x) ~ 6(y)

r= /dx dy H(x,y) > gen. Wick's theorem

H is a bi-distribution of Hadamard-form J

Algebra A

The space F[[h]] forms a *-algebra with %, which is the algebra of
observables A = (F[[A]], *).
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Idea of deformation quantization: Consider F[[A]] with a
non-commutative, associative product x given by

(o ¢] hn
A*B:A-B+ZFF”(A®B)
n=1

o o0
5(x) ~ 6(y)

r= /dx dy H(x,y) > gen. Wick's theorem

H is a bi-distribution of Hadamard-form J

Algebra A

The space F[[A]] forms a *-algebra with %, which is the algebra of
observables A = (F[[A]], *).

e H(x,y) — H(y,x) = A(x, y), then [A, B], = 0 if supp A)supp B
@ A is independent of the choice of H

@ A can be represented as the algebra of Wick polynomials on the Fock
space of the scalar field (generated by H) if we go on-shell
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Perturbation theory

nteraction

Let V be an local interaction functional of the form
1
Vi) =7 [dxg()é)",  geDM),  g=1lonOCM

inducing interacting field equations P¢ 4+ ¢"~t =0 on O.
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Perturbation theory

Interaction

Let V be an local interaction functional of the form

V(6) = ,17/dx g()6(x)", geDM), g=lonOcCM

inducing interacting field equations P¢ 4+ ¢"~t =0 on O.

V.

Retarded operators

We construct a linear map Ry on A with the properties
o Ry (Pos+ ¢ 1) = Pdron O
® Ry,4+v,(A) = Ry, (A) if supp(V2) is later than supp(A)

.
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Causal perturbation theory

Define inductively (in /) a time-ordered product for local functionals

AgB— Z—r" (A% B) Ax B supp(A) later than supp(B)
Bx A supp(B) later than supp(A)

where in ', H is replaced by HF = H + iA,4.
Up to order A" this amounts to extending the distributions?

D'(MK\ {0}) > HE » HE e D'(M¥),  k=1,...,n

“The extension is ambiguous <+ renormalization freedom
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Causal perturbation theory

Define inductively (in /) a time-ordered product for local functionals

AgB— Z—r" (A% B) Ax B supp(A) later than supp(B)
Bx A supp(B) later than supp(A)

where in ', H is replaced by HF = H + iA,4.
Up to order A" this amounts to extending the distributions?

D'(MK\ {0}) > HE » HE e D'(M¥),  k=1,...,n

“The extension is ambiguous <+ renormalization freedom

Then one can define the S-matrix §(V) = /Y (up to h") and:

Ry(A) = 8(V)* % (8(V) -7 A)

Falk Lindner (Il. ITP — Univ. of Hamburg) 23/11/2012
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Interacting theory

The algebra Ay (O), which is generated by the R\/(A) with A € A(O) is
called the interacting algebra of observables. Its algebraic structure does
not depend on the choice of g outside of @ and we obtain a net

0 — Ay(0)

f interacti Igeb d = li diabatic limit.
of interacting algebras and Ay O;(nM.AV(O) adiabatic limi
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Interacting theory

The algebra Ay (O), which is generated by the Ry(A) with A € A(O) is
called the interacting algebra of observables. Its algebraic structure does
not depend on the choice of g outside of @ and we obtain a net

0 — Ay(0)

f interacti Igeb d = li diabatic limit.
of interacting algebras and Ay Og(nMAV(O) adiabatic limi

Generating functional for interacting time-ordered products

Let Af, f € D(O) be a local field. The generating functional of the
expectation values of interacting time-ordered products of Af in a state w
is given by

Z(f) = w(S(V)* 1% 8(V + Af))
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Motivation to extend the formalism

Vacuum sector

Let w be the vacuum state of the free theory. Then w translates to a state
on Ay (O), which exists in the adiabatic limit and fulfills

1 w(S(V + A7)
2() = =)

in the sense of generating functionals: Gell-Mann and Low formula.
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Motivation to extend the formalism

Vacuum sector

Let w be the vacuum state of the free theory. Then w translates to a state
on Ay (O), which exists in the adiabatic limit and fulfills

1 w(S(V + A7)
2() = =)

in the sense of generating functionals: Gell-Mann and Low formula.

Finite temperature

Let wg be the KMS-state of the free theory.

@ wp translates to some state on Ay/(O): adiabatic limit: unknown

@ similar factorization not expected since, spectrum condition was
crucial — Ansatz: modify theory
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Thermofield dynamics (TFD)

Let 91 be the von-Neumann algebra associated to the scalar field ¢¢ with
f € D in the KMS-state wg and
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Thermofield dynamics (TFD)

Let 91 be the von-Neumann algebra associated to the scalar field ¢¢ with
f € D in the KMS-state wg and

@ j(A) = JAJ the modular conjugation, obtained by Tomita-Takesaki
theory

@ ‘B the *-algebra generated by 90t and j(91) = 9
For an (extended) interaction V = V — j(V/) € 9B we assume to get

Z(F) 25 ws(Sw(V + Af)) = Zs(f)

for the KMS-state wg.
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Realization in the pAQFT approach

Configuration space

Enlarge the field content: & = &€ & €.
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Realization in the pAQFT approach

Configuration space

Enlarge the field content: & = &€ & €.

v

Enlarged algebra B

Define a -product on functionals in F(&)[[A]]

D (x,y) Df(x,y+iﬁ/2)>’ 8= e

Ai(x,y)= (Dﬁ(x,er i3/2) D (y,x)

where Df is the KMS two-point functions of the scalar field.
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Realization in the pAQFT approach

Configuration space

Enlarge the field content: & = &€ & €.

Enlarged algebra B

Define a -product on functionals in F(&)[[A]]

B Dﬁ(x,y) DB(X,}/ +iB/2) _ e’
A= (Dﬁ(xfw s Dl ) T ReT

where Dﬁ is the KMS two-point functions of the scalar field.

Subalgebras By and B,

5 5
Bi={AeB: —A=0}, B,={AcB: —A=0
1={ACB: g A=0h B=1AcB g A=0)

Falk Lindner (Il. ITP — Univ. of Hamburg) 23/11/2012 11 /22
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Generalized modular conjugation

Generalized modular conjugation

We define a map

jiB=B, (A ) = A (,9), j=j"
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We define a map
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Properties of B

OB]_%A

.
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Generalized modular conjugation

Generalized modular conjugation

We define a map

j:B=B,  (jA(g¥)=A",9), j=j"

Properties of B

o Bl = _,4
o [B1,B], =0
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Generalized modular conjugation

Generalized modular conjugation

We define a map

j:B=B,  (jA(g¥)=A",9), j=j"

Properties of B

o Bl = _,4
o [B1,B], =0

@ j is an automorphism on B

@ J is an isomorphism of By with B,

.
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Perturbation theory

Time-ordered product

We introduce a time-ordered product -5 by a matrix-valued Feynman
propagator

_( , Detoy) DLy +iB/2)
A= (Df(xfym/z) D)

where D(ﬁa)f__ is the (anti-) Feynman propagator for the KMS state.
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Perturbation theory

Time-ordered product

We introduce a time-ordered product -5 by a matrix-valued Feynman
propagator

_( , Detoy) DLy +iB/2)
A= (Df(x,Fy+iﬂ/2) D)

where D(ﬂa)f__ is the (anti-) Feynman propagator for the KMS state.

The S-Matrix 8;(V) of the extended theory is given by the time-ordered
exponential®

A

SB(V):exp,T(i\A/), V=Vv—jV), VebB

?Renormalization ambiguity is the same as the pAQFT case, cf. Af

Falk Lindner (Il. ITP — Univ. of Hamburg)
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Equivalence

Interacting observables

The map Ry, corresponding to 53(\7) in B is given by

RV(A)st) * [85(¥) 1 A
(@) 7 () " (i) A A

v

Falk Lindner (Il. ITP — Univ. of Hamburg) 23/11/2012 14 / 22



Equivalence

Interacting observables

The map Ry, corresponding to 53(\7) in B is given by

Ro(A) = 85(V)~  [85(V) -+ A

%
= (&) 7+ () T [ i) 4],

If Ais observable, namely A € B1, we obtain
Ry(A) = 85(V) ' % (85(V) -7 A)

= () 7 < (Y 5 A) e B,

AecB
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Equivalence

Interacting observables
The map Ry, corresponding to 53(\7) in B is given by

Ro(A) = 85(V)~  [85(V) -+ A
= () T (i) [(Y i) v Al AeB
If Ais observable, namely A € B1, we obtain
Ry(A) = 85(V) ™ * (85(V) -7 A)
= () 7 < (Y 5 A) e B,

The algebra, generated by the interacting observables Ry, (B1), coincides
with the algebra of the pAQFT approach, which is generated by Ry/(A).

Falk Lindner (Il. ITP — Univ. of Hamburg) 23/11/2012 14 / 22



Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by Ry and Ry, acting on A(O) coincide:

This approach does not help on deciding, whether wg translates to a
KMS-state on Ay .
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Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by Ry and Ry, acting on A(O) coincide:

This approach does not help on deciding, whether wg translates to a
KMS-state on Ay .

Back to motivation

If, wg exists in the adiabatic limit and

| A

@ 8(V)|Ss) tends to a translation invariant vector
@ j is implemented as the modular conjugation
on the interacting Hilbert space, then

Z5(f) = wp(85(V + Ar)) = (s j(S(V))S(V + Af) [Q3)
2Ly (Qg| S(V)TIS(V + Ar) [Q5) = Z(F)

v
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The contour approach of Schwinger and Keldysh

Accomplish the GML factorization by modifying the underlying spacetime:
i
Z(f) == wp(8c(V) -» Ar) = Zc(f)

where the -3 replaces time-ordering by path-ordering on some contour C in
complexified Minkowski spacetime € x R3.

v
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The contour C

Cq
—lo to -
Cy
.8
—ty — 15 C
o 2 to — i
Cy
—tg —if

Figure: The Schwinger-Keldysh contour C, where the limit ty — oo has to be

taken.

Falk Lindner (Il. ITP — Univ. of Hamburg)
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Extension of the underlying spacetime

Spacetime defined by C
Denote by M¢ the spacetime

4
Mc=JZixR? L CR
i=1

where the Z; are the parameter spaces of the individual contour pieces C;.
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Extension of the underlying spacetime

Spacetime defined by C

Denote by M¢ the spacetime

4
Mc=JZixR? L CR
i=1

where the Z; are the parameter spaces of the individual contour pieces C;.

Configuration space
Define the configuration space ¢ € &(Mc) = @7, &(Mc,), such that

¢(Ta X) = (¢1(Tlax)a .. .,¢4(7'4,X)), supp ¢i C MCn Ti € Ii

A
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Factorization

*-product, -p-product

Denote a parametrization of C by 7 ++ C/(7). Define x and - for
functionals on £(M¢) by the (4x4)-matrix-valued distributions

DI(Cir) - Ci(r)) 7> ]
Bi(r,7') = lim { DX(Ci(r) ~ CI(r)) i<j, s&{F+}
DI(Ci(r) = Ci(+")) i=]

where DEH is the KMS Feynman propagator (two-point function).
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Factorization

*-product, -p-product

Denote a parametrization of C by 7 ++ C/(7). Define x and - for
functionals on £(M¢) by the (4x4)-matrix-valued distributions

DI(Cir) - Ci(r)) 7> ]
Bi(r,7') = lim { DX(Ci(r) ~ CI(r)) i<j, s&{F+}
DI(Ci(r) = Ci(+")) i=]

where DEH is the KMS Feynman propagator (two-point function).

All matrix elements of A /¢, which explicitly depend on tp vanish
uniformly in the limit tg — oo.
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Equivalence of SK and TFD

Explicitly we obtain

p! o D} 0\ - |
B o o | D0 =Dl(t+ip/2) teR
Bi=|ps o pp oo | PULO)=DI(-1) )
0o 0 o £ E{(r,0) = DI(~im) 7€ [0, 3]
+
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Equivalence of SK and TFD

Explicitly we obtain

D} o DY 0\ =4 B
0+ Ef 0+ 0 D?g(tO) D§(t+1[3/2) teR
A, = P o0 D o D”(t,0) = D/ (—t) ,
; )y E}(7,0) = D (~ir) € [0,5]

Isomorphic algebra

The subalgebra

Ass {A e i 52)2/4(@ —0= 5A(¢)}

is isomorphic to the algebra B of TFD.
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-p-ordered exponential

The S-matrix of theory is derived as the path-ordered exponential
Sc(V) = exp.,(iV) = exp., (i(Va + V3)) - exp., (iV2) - exp.,, (iVa)

for an interaction V = > V;, supp V; C Mc,.
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-p-ordered exponential

The S-matrix of theory is derived as the path-ordered exponential
8c(V) = exp,,y(i\_/) = exp.,(i(Vi + V3)) - exp., (iV2) - exp.,(iVa)

for an interaction V = > V;, supp V; C Mc,.

V.
Interacting observables

The associated retarded operator Ry to 8¢ for an observable A is given by

Ry(A) = Sc(V) % (8c(V) -p A) = 8c(VA) !+ (8c(V4) -9 A)

.
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-p-ordered exponential

The S-matrix of theory is derived as the path-ordered exponential
8c(V) = exp,,y(i\_/) = exp.,(i(Vi + V3)) - exp., (iV2) - exp.,(iVa)

for an interaction V = > V;, supp V; C Mc,.

| \

Interacting observables

The associated retarded operator Ry to 8¢ for an observable A is given by

Ry(A) = Sc(V) % (8c(V) -p A) = 8c(VA) !+ (8c(V4) -9 A)

| \

Gell-Mann and Low factorization

Zc(f) = wa(8c(V + Af)) = Kwg(Sc(Va) -2 Sc(Vi + Af))

Z5(f)

where K = wg(8c(V2))wp(8c(Va))

v
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Conclusion

@ provided a state-independent framework for perturbative QFT
(PAQFT)

@ main problem: Existence of a KMS-state

@ construction of TFD and the SK-contour approach as extensions of
pAQFT

@ suggested, that a Gell-Mann and Low type of factorization for the
generating functionals Z(f) may be valid, if the KMS state exists
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