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The algebraic approach to perturbative QFT (pAQFT)

Interplay between fields of

algebraic approach (esp. QFT on CST)
deformation quantization
path integral approach to perturbative QFT

Here: M Minkowski spacetime, Field content: one real scalar field

Starting point: Space of all configurations (resp. space of all histories)

E = C∞(M) ←→ off-shell formalism

Observables are smooth functionals of the configurations C∞(E) 3 A:

δn

δφn
A(φ) ≡ A(n)(φ) ∈ E′(Mn)
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Algebra of local observables

Classical Algebra Acl

The space F of smooth, compactly supported functionals A ∈ C∞(E),
such that

WF
δn

δφn
A(φ) ⊂

{
(x1, . . . , xn, k1, . . . , kn) ∈ ṪMn :

n∑
i=1

ki = 0

}

constitutes a commutative algebra with the pointwise product
(A · B)(φ) = A(φ)B(φ) which is called Acl = (F , ·).

can be equipped with a Poisson bracket {·, ·}
fulfills {A,B} = 0 if suppA spacelike separated from suppB
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Idea of deformation quantization: Consider F [[~]] with a
non-commutative, associative product ? given by

A ? B = A · B +
∞∑
n=1

~n

n!
Γn(A⊗ B)

Γ =

∫
dx dy H(x , y)

δ

δφ(x)
⊗ δ

δφ(y)
←→ gen. Wick’s theorem

H is a bi-distribution of Hadamard-form

Algebra A
The space F [[~]] forms a ∗-algebra with ?, which is the algebra of
observables A = (F [[~]], ?).

H(x , y)− H(y , x) = ∆(x , y), then [A,B]? = 0 if suppA〉〈suppB

A is independent of the choice of H

A can be represented as the algebra of Wick polynomials on the Fock
space of the scalar field (generated by H) if we go on-shell
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Perturbation theory

Interaction

Let V be an local interaction functional of the form

V (φ) =
1

n

∫
dx g(x)φ(x)n, g ∈ D(M), g = 1 on O ⊂ M

inducing interacting field equations Pφ+ φn−1 = 0 on O.

Retarded operators

We construct a linear map RV on A with the properties

RV

(
PΦf + Φn−1

f

)
= PΦf on O

RV1+V2(A) = RV1(A) if supp(V2) is later than supp(A)
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Causal perturbation theory

Define inductively (in ~) a time-ordered product for local functionals

A ·T B =
∞∑
n=0

~n

n!
Γn
F (A⊗ B) =

{
A ? B supp(A) later than supp(B)

B ? A supp(B) later than supp(A)

where in ΓF , H is replaced by HF = H + i∆A.
Up to order ~n this amounts to extending the distributionsa

D′(Mk \ {0}) 3 H̊k
F → Hk

F ∈ D′(Mk), k = 1, . . . , n

aThe extension is ambiguous ↔ renormalization freedom

Then one can define the S-matrix S(V ) = eiV·T (up to ~n) and:

RV (A) = S(V )?−1 ? (S(V ) ·T A)
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Interacting theory

The algebra AV (O), which is generated by the RV (A) with A ∈ A(O) is
called the interacting algebra of observables. Its algebraic structure does
not depend on the choice of g outside of O and we obtain a net

O −→ AV (O)

of interacting algebras and AV = lim
O↗M

AV (O) adiabatic limit.

Generating functional for interacting time-ordered products

Let Af , f ∈ D(O) be a local field. The generating functional of the
expectation values of interacting time-ordered products of Af in a state ω
is given by

Z (f ) = ω(S(V )?−1 ? S(V + Af ))
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Motivation to extend the formalism

Vacuum sector

Let ω be the vacuum state of the free theory. Then ω translates to a state
on AV (O), which exists in the adiabatic limit and fulfills

Z (f )
a.l.−→ ω(S(V + Af ))

ω(S(V ))

in the sense of generating functionals: Gell-Mann and Low formula.

Finite temperature

Let ωβ be the KMS-state of the free theory.

ωβ translates to some state on AV (O): adiabatic limit: unknown

similar factorization not expected since, spectrum condition was
crucial → Ansatz: modify theory
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Thermofield dynamics (TFD)

Main idea

Let M be the von-Neumann algebra associated to the scalar field φf with
f ∈ D in the KMS-state ωβ and

j(A) = JAJ the modular conjugation, obtained by Tomita-Takesaki
theory

B the ∗-algebra generated by M and j(M) ∼= M′

For an (extended) interaction V̂ = V − j(V ) ∈ B we assume to get

Z (f )
a.l.−→ ωβ(SB(V̂ + Af )) = ZB(f )

for the KMS-state ωβ.
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Realization in the pAQFT approach

Configuration space

Enlarge the field content: Ê = E⊕ E.

Enlarged algebra B
Define a ?-product on functionals in F(Ê)[[~]]

∆+(x , y) =

(
Dβ

+(x , y) Dβ
+(x , y + iβ/2)

Dβ
+(x , y + iβ/2) Dβ

+(y , x)

)
, β =

e0

kBT

where Dβ
+ is the KMS two-point functions of the scalar field.

Subalgebras B1 and B2

B1 = {A ∈ B :
δ

δφ2
A = 0}, B2 = {A ∈ B :

δ

δφ1
A = 0}
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∆+(x , y) =

(
Dβ

+(x , y) Dβ
+(x , y + iβ/2)

Dβ
+(x , y + iβ/2) Dβ

+(y , x)

)
, β =

e0

kBT

where Dβ
+ is the KMS two-point functions of the scalar field.

Subalgebras B1 and B2

B1 = {A ∈ B :
δ

δφ2
A = 0}, B2 = {A ∈ B :

δ

δφ1
A = 0}

Falk Lindner (II. ITP – Univ. of Hamburg) 23/11/2012 11 / 22



Generalized modular conjugation

Generalized modular conjugation

We define a map

j : B → B, (jA)(φ, ψ) = A∗(ψ, φ), j = j−1

Properties of B
B1
∼= A

[B1,B2]? = 0

j is an automorphism on B
j is an isomorphism of B1 with B2
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Perturbation theory

Time-ordered product

We introduce a time-ordered product ·T by a matrix-valued Feynman
propagator

∆F (x , y) =

(
Dβ
F (x , y) Dβ

+(x , y + iβ/2)

Dβ
+(x , y + iβ/2) Dβ

aF (x , y)

)

where Dβ
(a)F is the (anti-) Feynman propagator for the KMS state.

S-Matrix

The S-Matrix SB(V̂ ) of the extended theory is given by the time-ordered
exponentiala

SB(V̂ ) = exp·T(i V̂ ), V̂ = V − j(V ), V ∈ B1

aRenormalization ambiguity is the same as the pAQFT case, cf. ∆F
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Equivalence

Interacting observables

The map RV̂ corresponding to SB(V̂ ) in B is given by

RV̂ (A) = SB(V̂ )?−1 ?
[
SB(V̂ ) ·T A

]
=
(

eiV·T

)?−1
?
(
j(eiV·T )

)?−1
?
[(

eiV·T ? j(eiV·T )
)
·T A

]
, A ∈ B

If A is observable, namely A ∈ B1, we obtain

RV̂ (A) = SB(V )?−1 ? (SB(V ) ·T A)

=
(

eiV·T

)?−1
?
(

eiV·T ·T A
)
∈ B1

The algebra, generated by the interacting observables RV̂ (B1), coincides
with the algebra of the pAQFT approach, which is generated by RV (A).
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Conclusion, Adiabatic limit

Adiabatic limit

Since the algebras generated by RV and RV̂ acting on A(O) coincide:
This approach does not help on deciding, whether ωβ translates to a
KMS-state on AV .

Back to motivation

If, ωβ exists in the adiabatic limit and

S(V ) |Ωβ〉 tends to a translation invariant vector

j is implemented as the modular conjugation

on the interacting Hilbert space, then

ZB(f ) = ωβ(SB(V̂ + Af )) = 〈Ωβ| j(S(V ))S(V + Af ) |Ωβ〉
a.l.−→
〈
Ωβ

∣∣ S(V )−1S(V + Af )
∣∣Ωβ

〉
= Z (f )
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The contour approach of Schwinger and Keldysh

Main idea

Accomplish the GML factorization by modifying the underlying spacetime:

Z (f )
a.l.−→ ωβ(SC (V ) ·P Af ) = ZC (f )

where the ·P replaces time-ordering by path-ordering on some contour C in
complexified Minkowski spacetime C×R3.
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The contour C

−t0 t0

C1

C3

C2

C4

t0 − iβ2
−t0 − iβ2

−t0 − iβ

Figure: The Schwinger-Keldysh contour C , where the limit t0 →∞ has to be
taken.
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Extension of the underlying spacetime

Spacetime defined by C

Denote by MC the spacetime

MC =
4⋃

i=1

Ii ×R3, Ii ⊆ R

where the Ii are the parameter spaces of the individual contour pieces Ci .

Configuration space

Define the configuration space φ ∈ E(MC ) ∼=
⊕4

i=1 E(MCi
), such that

φ(τ, x) = (φ1(τ1, x), . . . , φ4(τ4, x)), suppφi ⊂ MCi
, τi ∈ Ii
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Factorization

?-product, ·P-product

Denote a parametrization of C by τ 7→ C i (τ). Define ? and ·P for
functionals on E(MC ) by the (4x4)-matrix-valued distributions

∆ij
•(τ, τ ′) = lim

t0→∞


Dβ

+(C i (τ)− C j(τ ′)) i > j

Dβ
−(C i (τ)− C j(τ ′)) i < j

Dβ
• (C i (τ)− C i (τ ′)) i = j

, • ∈ {F ,+}

where Dβ
F/+ is the KMS Feynman propagator (two-point function).

Theorem

All matrix elements of ∆+/F , which explicitly depend on t0 vanish
uniformly in the limit t0 →∞.
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Equivalence of SK and TFD

Explicitly we obtain

∆+ =


Dβ

+ 0 D̃β
+ 0

0 Eβ+ 0 0

D̃β
+ 0 Dβ

− 0

0 0 0 Eβ+


D̃β

+(t, 0) = Dβ
+(t + iβ/2)

Dβ
−(t, 0) = Dβ

+(−t)

Eβ+(τ, 0) = Dβ
+(−iτ)

t ∈ R

τ ∈ [0, β2 ]

Isomorphic algebra

The subalgebra

A13 =

{
A ∈ AC :

δ

δφ2
A(φ) = 0 =

δ

δφ4
A(φ)

}
is isomorphic to the algebra B of TFD.
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·P-ordered exponential

The S-matrix of theory is derived as the path-ordered exponential

SC (V̄ ) = exp·P(i V̄ ) = exp·P(i(V1 + V3)) · exp·P(iV2) · exp·P(iV4)

for an interaction V̄ =
∑

Vi , suppVi ⊂ MCi
.

Interacting observables

The associated retarded operator RV to SC for an observable A is given by

RV̄ (A) = SC (V̄ )−1 ? (SC (V̄ ) ·P A) = SC (V1)?−1 ? (SC (V1) ·P A)

Gell-Mann and Low factorization

ZC (f ) = ωβ(SC (V̄ + Af )) = K ωβ(SC (V3) ·P SC (V1 + Af ))︸ ︷︷ ︸
ZB(f )

where K = ωβ(SC (V2))ωβ(SC (V4))
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Conclusion

provided a state-independent framework for perturbative QFT
(pAQFT)

main problem: Existence of a KMS-state

construction of TFD and the SK-contour approach as extensions of
pAQFT

suggested, that a Gell-Mann and Low type of factorization for the
generating functionals Z (f ) may be valid, if the KMS state exists
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