Spectral Action on Quantum Spheres

Michał Eckstein

Joint project with Bruno lochum (CTP, Marseille) and Andrzej Sitarz(UJ)

Jagellonian University, Kraków, Poland

November 23, 2012

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

Foundation for Polish Science

• Why Spectral Action?

- Idea: Do geometry using quantum tools spectral approach
- Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, ...)
- "A dress for Standard Model the beggar"
- Testable predictions (cosmology, particle physics)

• Why Podleś (quantum) sphere?

- A quantum homogeneous space of $SU_a(2)$
- A $\mathcal{U}_{\sigma}(su(2))$ -equivariant spectral triple
- First example of a "truly noncommutative" space $(\mathcal{A}_g, \mathcal{H}_g, \mathcal{D}_g)$
- Peculiarities in the dimension spectrum

Why Spectral Action?

- Idea: Do geometry using quantum tools spectral approach
- Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, ...)
- "A dress for Standard Model the beggar"
- Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_{\sigma}(2)$
 - A $\mathcal{U}_{\sigma}(su(2))$ -equivariant spectral triple
 - First example of a "truly noncommutative" space $(\mathcal{A}_g, \mathcal{H}_g, \mathcal{D}_g)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, . . .)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_{\sigma}(2)$
 - A $\mathcal{U}_{\sigma}(su(2))$ -equivariant spectral triple
 - First example of a "truly noncommutative" space $(\mathcal{A}_a, \mathcal{H}_a, \mathcal{D}_a)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, . . .)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_q(2)$
 - A $\mathcal{U}_{\sigma}(su(2))$ -equivariant spectral triple
 - First example of a "truly noncommutative" space $(A_a, \mathcal{H}_a, \mathcal{D}_a)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, ...)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - ullet A quantum homogeneous space of $SU_q(2)$
 - A $\mathcal{U}_{\sigma}(su(2))$ -equivariant spectral triple
 - First example of a "truly noncommutative" space $(A_a, \mathcal{H}_a, \mathcal{D}_a)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, . . .)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_q(2)$
 - A $\mathcal{U}_q(su(2))$ -equivariant spectral triple
 - First example of a "truly noncommutative" space $(\mathcal{A}_q,\mathcal{H}_q,\mathcal{D}_q)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, ...)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_q(2)$
 - A $\mathcal{U}_q(su(2))$ -equivariant spectral triple
 - First example of a "truly noncommutative" space $(\mathcal{A}_q,\mathcal{H}_q,\mathcal{D}_q)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, ...)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_q(2)$
 - A $\mathcal{U}_q(su(2))$ -equivariant spectral triple
 - First example of a "truly noncommutative" space $(\mathcal{A}_q,\mathcal{H}_q,\mathcal{D}_q)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, ...)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_q(2)$
 - A $\mathcal{U}_q(su(2))$ -equivariant spectral triple
 - ullet First example of a "truly noncommutative" space $(\mathcal{A}_q,\mathcal{H}_q,\mathcal{D}_q)$
 - Peculiarities in the dimension spectrum

- Why Spectral Action?
 - Idea: Do geometry using quantum tools spectral approach
 - Geometric description of pathological spaces (fractals, non-Hausdorff spaces, foliations, ...)
 - "A dress for Standard Model the beggar"
 - Testable predictions (cosmology, particle physics)
- Why Podleś (quantum) sphere?
 - A quantum homogeneous space of $SU_q(2)$
 - A $\mathcal{U}_q(su(2))$ -equivariant spectral triple
 - ullet First example of a "truly noncommutative" space $(\mathcal{A}_q,\mathcal{H}_q,\mathcal{D}_q)$
 - Peculiarities in the dimension spectrum

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- A pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $ullet \ [\mathcal{D},\pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $ullet |[\mathcal{D},\pi(a)],J\pi(b^*)J^\dagger|=0$ for all $a,b\in\mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness'

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \bigcap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $ullet |[\mathcal{D},\pi(a)],J\pi(b^*)J^\dagger|=0$ for all $a,b\in\mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness'

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \bigcap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - ullet $(\mathcal{D}-\lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - \bullet $[\mathcal{D}, \pi(a)], J\pi(b^*)J^{\dagger}] = 0$ for all $a, b \in \mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness'

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \bigcap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $\left[[\mathcal{D}, \pi(a)], J\pi(b^*)J^\dagger \right] = 0$ for all $a,b \in \mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness'

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \bigcap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $\left[[\mathcal{D}, \pi(a)], J\pi(b^*)J^\dagger \right] = 0$ for all $a,b \in \mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness'

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \bigcap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $\left[[\mathcal{D}, \pi(a)], J\pi(b^*)J^\dagger \right] = 0$ for all $a,b \in \mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness'

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \bigcap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\cal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $\left[[\mathcal{D},\pi(a)],J\pi(b^*)J^\dagger\right]=0$ for all $a,b\in\mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness'

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \cap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - ullet $\left[[\mathcal{D},\pi(a)],J\pi(b^*)J^\dagger
 ight]=0$ for all $a,b\in\mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \bigcap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $\left[[\mathcal{D},\pi(a)],J\pi(b^*)J^\dagger\right]=0$ for all $a,b\in\mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness"

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \cap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

$$(\mathcal{A},\mathcal{H},\mathcal{D})$$
 - spectral triple

- \mathcal{A} pre- C^* -algebra (unital)
- \mathcal{H} Hilbert space \exists a faithful representation $\pi(\mathcal{A}) \subset \mathcal{B}(\mathcal{H})$
- ullet ${\mathcal D}$ the Dirac operator selfadjoint, unbounded
 - $(\mathcal{D} \lambda)^{-1}$ for any $\lambda \notin \mathbb{R}$ compact resolvent
 - $[\mathcal{D}, \pi(a)] \in \mathcal{B}(\mathcal{H})$ for all $a \in \mathcal{A}$
 - $\left[[\mathcal{D},\pi(a)],J\pi(b^*)J^\dagger\right]=0$ for all $a,b\in\mathcal{A}$ first order condition
- J real structure, antilinear $J^2=\pm 1$, $J\mathcal{D}=\pm \mathcal{D}J$, $JaJ^{-1}\subset \pi(\mathcal{A})'$
- regularity axiom ,,smoothness"

$$\pi(\mathcal{A}), [\mathcal{D}, \pi(\mathcal{A})] \subset \cap_{k=0}^{\infty} \mathrm{Dom}(\delta^k), \text{ with } \delta = [|\mathcal{D}|, \cdot]$$

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $\mathrm{OP}^0 = \cap_{k \geq 0} \mathrm{Dom} \, \delta^k$ operators of order ≤ 0 .
- $OP^{\alpha} = \{T \mid T|\mathcal{D}|^{-\alpha} \in OP^{0}\}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(\mathcal{A}) \ni T \quad \Rightarrow$

$$T = P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}$$
, for some $P \in D(\mathcal{A}), \ p \in \mathbb{N}$ and any $N \in \mathbb{N}$.

- ΨDO s of order $\leq k$: $\Psi(A)^k := \Psi(A) \cap OP^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b] |\mathcal{D}|^7, [\mathcal{D}, b] a |\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(\mathcal{A})^{\alpha}\Psi(\mathcal{A})^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $\mathrm{OP}^0 = \cap_{k \geq 0} \mathrm{Dom} \, \delta^k$ operators of order ≤ 0 .
- $OP^{\alpha} = \{T \mid T | \mathcal{D} | ^{-\alpha} \in OP^0 \}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(\mathcal{A}) \ni T \quad \Rightarrow$

$$T = P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}$$
, for some $P \in D(\mathcal{A}), \ p \in \mathbb{N}$ and any $N \in \mathbb{N}$.

- ΨDO s of order $\leq k$: $\Psi(\mathcal{A})^k := \Psi(\mathcal{A}) \cap \mathrm{OP}^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b] |\mathcal{D}|^7, [\mathcal{D}, b] a |\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(\mathcal{A})^{\alpha}\Psi(\mathcal{A})^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $OP^0 = \bigcap_{k \ge 0} Dom \delta^k$ operators of order ≤ 0 .
- $OP^{\alpha} = \{T \mid T | \mathcal{D} | ^{-\alpha} \in OP^0 \}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(\mathcal{A}) \ni T \quad \Rightarrow$

$$T=P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}, \quad \text{for some } P\in D(\mathcal{A}), \ p\in \mathbb{N} \text{ and any } N\in \mathbb{N}.$$

- ΨDO s of order $\leq k$: $\Psi(A)^k := \Psi(A) \cap OP^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b] |\mathcal{D}|^7, [\mathcal{D}, b] a |\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(\mathcal{A})^{\alpha}\Psi(\mathcal{A})^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $OP^0 = \bigcap_{k \ge 0} Dom \delta^k$ operators of order ≤ 0 .
- $OP^{\alpha} = \{T \mid T | \mathcal{D} | ^{-\alpha} \in OP^0 \}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(\mathcal{A}) \ni T \quad \Rightarrow$

$$T = P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}$$
, for some $P \in D(\mathcal{A}), \ p \in \mathbb{N}$ and any $N \in \mathbb{N}$.

- ΨDO s of order $\leq k$: $\Psi(\mathcal{A})^k := \Psi(\mathcal{A}) \cap \mathrm{OP}^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b] |\mathcal{D}|^7, [\mathcal{D}, b] a |\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(\mathcal{A})^{\alpha}\Psi(\mathcal{A})^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $OP^0 = \bigcap_{k>0} Dom \delta^k$ operators of order ≤ 0 .
- $OP^{\alpha} = \{ T \mid T | \mathcal{D} |^{-\alpha} \in OP^{0} \}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(A) \ni T \Rightarrow$

$$T=P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}, \quad \text{for some } P\in D(\mathcal{A}), \ p\in \mathbb{N} \text{ and any } N\in \mathbb{N}.$$

- ΨDO s of order < k: $\Psi(A)^k := \Psi(A) \cap OP^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b]|\mathcal{D}|^7, [\mathcal{D}, b]a|\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(\mathcal{A})^{\alpha}\Psi(\mathcal{A})^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $OP^0 = \bigcap_{k>0} Dom \delta^k$ operators of order ≤ 0 .
- $OP^{\alpha} = \{ T \mid T | \mathcal{D} |^{-\alpha} \in OP^{0} \}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(A) \ni T \Rightarrow$

$$T = P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}$$
, for some $P \in D(\mathcal{A}), \ p \in \mathbb{N}$ and any $N \in \mathbb{N}$.

- ΨDO s of order < k: $\Psi(\mathcal{A})^k := \Psi(\mathcal{A}) \cap OP^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b]|\mathcal{D}|^7, [\mathcal{D}, b]a|\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(A)^{\alpha}\Psi(A)^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $OP^0 = \bigcap_{k>0} Dom \delta^k$ operators of order < 0.
- $OP^{\alpha} = \{ T \mid T | \mathcal{D} |^{-\alpha} \in OP^{0} \}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(A) \ni T \Rightarrow$

$$T=P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}, \quad \text{for some } P\in D(\mathcal{A}), \ p\in \mathbb{N} \text{ and any } N\in \mathbb{N}.$$

- ΨDO s of order < k: $\Psi(\mathcal{A})^k := \Psi(\mathcal{A}) \cap OP^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b]|\mathcal{D}|^7, [\mathcal{D}, b]a|\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(\mathcal{A})^{\alpha}\Psi(\mathcal{A})^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

- Unbounded derivation $\delta(T) := [|\mathcal{D}|, T]$ for any $T \in \mathcal{B}(\mathcal{H})$.
- $OP^0 = \bigcap_{k>0} Dom \delta^k$ operators of order < 0.
- $OP^{\alpha} = \{ T \mid T | \mathcal{D} |^{-\alpha} \in OP^{0} \}.$
- D(A) polynomial algebra generated by $A, JAJ^{\dagger}, \mathcal{D}, |\mathcal{D}|$.
- Pseudodifferential operators $\Psi(A) \ni T \Rightarrow$

$$T=P|\mathcal{D}|^{-p} \mod \mathrm{OP}^{-N}, \quad \text{for some } P\in D(\mathcal{A}), \ p\in \mathbb{N} \text{ and any } N\in \mathbb{N}.$$

- ΨDO s of order < k: $\Psi(\mathcal{A})^k := \Psi(\mathcal{A}) \cap OP^k$.
- Examples: $a, \mathcal{D}^2, a[\mathcal{D}, b]|\mathcal{D}|^7, [\mathcal{D}, b]a|\mathcal{D}|^{-14}$.
- Regularity axiom $\Rightarrow \Psi(\mathcal{A})^{\alpha}\Psi(\mathcal{A})^{\beta} \subset \mathrm{OP}^{\alpha+\beta}$.

Dimension Spectrum [Connes, Moscovici (1995)]

A spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ has dimension spectrum Sd if $\operatorname{Sd} \subset \mathbb{C}$ is discrete and for any element b of the algebra $\Psi(\mathcal{A})^0$ the function

$$\zeta_{\mathcal{D}}^b(z) = \operatorname{Tr}\left(b|\mathcal{D}|^{-z}\right)$$

- 1 Higher order poles \Rightarrow multiplicities in Sd.
- 2 Regularity axiom $\Rightarrow A \subset \Psi(A)^0$, $[D, A] \subset \Psi(A)^0$.
- ① $\zeta^b_{\mathcal{D}}$ is holomorphic for $\Re(z) > \mathfrak{p}$ when $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is \mathfrak{p} -summable.

Dimension Spectrum [Connes, Moscovici (1995)]

A spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ has dimension spectrum Sd if $\operatorname{Sd} \subset \mathbb{C}$ is discrete and for any element b of the algebra $\Psi(\mathcal{A})^0$ the function

$$\zeta_{\mathcal{D}}^b(z) = \operatorname{Tr}\left(b|\mathcal{D}|^{-z}\right)$$

- **1** Higher order poles \Rightarrow multiplicities in Sd.
- 2 Regularity axiom $\Rightarrow A \subset \Psi(A)^0$, $[D, A] \subset \Psi(A)^0$.
- ① $\zeta^b_{\mathcal{D}}$ is holomorphic for $\Re(z) > \mathfrak{p}$ when $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is \mathfrak{p} -summable.

Dimension Spectrum [Connes, Moscovici (1995)]

A spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ has dimension spectrum Sd if $\operatorname{Sd} \subset \mathbb{C}$ is discrete and for any element b of the algebra $\Psi(\mathcal{A})^0$ the function

$$\zeta_{\mathcal{D}}^b(z) = \operatorname{Tr}\left(b|\mathcal{D}|^{-z}\right)$$

- **1** Higher order poles \Rightarrow multiplicities in Sd.
- **2** Regularity axiom $\Rightarrow A \subset \Psi(A)^0$, $[D, A] \subset \Psi(A)^0$.
- ① $\zeta_{\mathcal{D}}^b$ is holomorphic for $\mathfrak{R}(z) > \mathfrak{p}$ when $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is \mathfrak{p} -summable.

Dimension Spectrum [Connes, Moscovici (1995)]

A spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ has dimension spectrum Sd if $\operatorname{Sd} \subset \mathbb{C}$ is discrete and for any element b of the algebra $\Psi(\mathcal{A})^0$ the function

$$\zeta_{\mathcal{D}}^b(z) = \operatorname{Tr}\left(b|\mathcal{D}|^{-z}\right)$$

- **1** Higher order poles \Rightarrow multiplicities in Sd.
- **2** Regularity axiom $\Rightarrow A \subset \Psi(A)^0$, $[D, A] \subset \Psi(A)^0$.
- **3** $\zeta^b_{\mathcal{D}}$ is holomorphic for $\Re(z) > \mathfrak{p}$ when $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is \mathfrak{p} -summable.

A commutative spectral triple

Connes' Reconstruction Theorem [1996-2008]

For every *commutative* spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ fulfilling the axioms there exists a smooth (compact) spin Riemannian manifold M such that:

- $\mathcal{A} = C^{\infty}(M)$,
- $\bullet \ \mathcal{H}=L^2(S(M)),$
- $Sd(M) = dim(M) \mathbb{N}$ and all of the poles are of first order.
- On manifolds with conical singularities one may encounter second order poles [J-M Lescure 1998].

A commutative spectral triple

Connes' Reconstruction Theorem [1996-2008]

For every *commutative* spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ fulfilling the axioms there exists a smooth (compact) spin Riemannian manifold M such that:

- $\mathcal{A} = C^{\infty}(M)$,
- $\bullet \ \mathcal{H}=L^2(S(M)),$
- $\operatorname{Sd}(M) = \dim(M) \mathbb{N}$ and all of the poles are of first order.
- On manifolds with conical singularities one may encounter second order poles [J-M Lescure 1998].

A commutative spectral triple

Connes' Reconstruction Theorem [1996-2008]

For every *commutative* spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ fulfilling the axioms there exists a smooth (compact) spin Riemannian manifold M such that:

- $\mathcal{A} = C^{\infty}(M)$,
- $\bullet \ \mathcal{H}=L^2(S(M)),$
- $\operatorname{Sd}(M) = \dim(M) \mathbb{N}$ and all of the poles are of first order.
- On manifolds with conical singularities one may encounter second order poles [J-M Lescure 1998].

The Spectral Action Principle [Chamseddine, Connes (1997)]

Physical action depends only upon the spectrum of \mathcal{D} .

Bosonic spectral action: $S_b = \text{Tr } f(\mathcal{D}/\Lambda), \Lambda$ - energy scale and f - cut-off function

Theorem [Chamseddine, Connes (1997)]

Let $(A, \mathcal{H}, \mathcal{D})$ be a spectral triple with simple dimension spectrum Sd then

$$S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda) \underset{\Lambda \to +\infty}{\sim} \sum_{k \in \operatorname{Sd}^+} f_k \Lambda^k \int |\mathcal{D}|^{-k} + f(0)\zeta_{\mathcal{D}}(0) + O(\Lambda^{-1}),$$

with
$$f_k = \int_0^\infty f(x) x^{k-1} dx$$
, $f = \underset{z=0}{\text{Res}} \operatorname{Tr} P |\mathcal{D}|^{-z}$.

Main tools

- $\bullet \ \ \text{Heat kernel expansion } \text{Tr}\left(e^{-t\mathcal{D}^2}\right) \ \underset{t \downarrow 10}{\sim} \ \sum_{k \geq 0} a_k(\mathcal{D}^2) t^{(k-d)/2}$
- Seeley-De Witt coefficients $a_k(\mathcal{D}^2) = \int_M$ geometrical inv.

The Spectral Action Principle [Chamseddine, Connes (1997)]

Physical action depends only upon the spectrum of \mathcal{D} .

Bosonic spectral action: $S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda)$, Λ - energy scale and f - cut-off function

Theorem [Chamseddine, Connes (1997)]

Let $(A, \mathcal{H}, \mathcal{D})$ be a spectral triple with simple dimension spectrum Sd then

$$S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda) \underset{\Lambda \to +\infty}{\sim} \sum_{k \in \operatorname{Sd}^+} f_k \Lambda^k \int |\mathcal{D}|^{-k} + f(0)\zeta_{\mathcal{D}}(0) + O(\Lambda^{-1}).$$

with
$$f_k = \int_0^\infty f(x) x^{k-1} dx$$
, $\int P = \underset{z=0}{\text{Res}} \operatorname{Tr} P |\mathcal{D}|^{-z}$.

Main tools

- $\bullet \ \ \text{Heat kernel expansion } \text{Tr}\left(e^{-t\mathcal{D}^2}\right) \ \underset{t\downarrow\downarrow 0}{\sim} \ \sum_{k\geq 0} a_k(\mathcal{D}^2) t^{(k-d)/2}$
- Seeley-De Witt coefficients $a_k(\mathcal{D}^2) = \int_M$ geometrical inv.

The Spectral Action Principle [Chamseddine, Connes (1997)]

Physical action depends only upon the spectrum of \mathcal{D} .

Bosonic spectral action: $S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda)$, Λ - energy scale and f - cut-off function

Theorem [Chamseddine, Connes (1997)]

Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be a spectral triple with simple dimension spectrum Sd then

$$S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda) \underset{\Lambda \to +\infty}{\sim} \sum_{k \in \operatorname{Sd}^+} f_k \Lambda^k \int |\mathcal{D}|^{-k} + f(0) \zeta_{\mathcal{D}}(0) + O(\Lambda^{-1}),$$

with
$$f_k = \int_0^\infty f(x) x^{k-1} dx$$
, $\int P = \mathop{\mathrm{Res}}_{z=0} \operatorname{Tr} P |\mathcal{D}|^{-z}$.

Main tools

- $\bullet \ \ \text{Heat kernel expansion } \text{Tr}\left(e^{-t\mathcal{D}^2}\right) \ \underset{t\downarrow 0}{\sim} \ \sum_{k\geq 0} a_k(\mathcal{D}^2) t^{(k-d)/2}$
- Seeley-De Witt coefficients $a_k(\mathcal{D}^2) = \int_M$ geometrical inv.

The Spectral Action Principle [Chamseddine, Connes (1997)]

Physical action depends only upon the spectrum of \mathcal{D} .

Bosonic spectral action: $S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda)$, Λ - energy scale and f - cut-off function

Theorem [Chamseddine, Connes (1997)]

Let $(A, \mathcal{H}, \mathcal{D})$ be a spectral triple with simple dimension spectrum Sd then

$$S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda) \underset{\Lambda \to +\infty}{\sim} \sum_{k \in \operatorname{Sd}^+} f_k \Lambda^k \int |\mathcal{D}|^{-k} + f(0) \zeta_{\mathcal{D}}(0) + O(\Lambda^{-1}),$$

with
$$f_k = \int_0^\infty f(x) x^{k-1} dx$$
, $\int P = \mathop{\mathrm{Res}}_{z=0} \operatorname{Tr} P |\mathcal{D}|^{-z}$.

Main tools:

- $\bullet \ \ \text{Heat kernel expansion } \text{Tr}\left(e^{-t\mathcal{D}^2}\right) \ \underset{t\downarrow 0}{\sim} \ \sum_{k\geq 0} a_k(\mathcal{D}^2) t^{(k-d)/2}$
- Seeley-De Witt coefficients $a_k(\mathcal{D}^2) = \int_M$ geometrical inv.

The Spectral Action Principle [Chamseddine, Connes (1997)]

Physical action depends only upon the spectrum of \mathcal{D} .

Bosonic spectral action: $S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda)$, Λ - energy scale and f - cut-off function

Theorem [Chamseddine, Connes (1997)]

Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be a spectral triple with simple dimension spectrum Sd then

$$S_b = \operatorname{Tr} f(\mathcal{D}/\Lambda) \underset{\Lambda \to +\infty}{\sim} \sum_{k \in \operatorname{Sd}^+} f_k \Lambda^k \int |\mathcal{D}|^{-k} + f(0) \zeta_{\mathcal{D}}(0) + O(\Lambda^{-1}),$$

with
$$f_k = \int_0^\infty f(x) x^{k-1} dx$$
, $\int P = \mathop{\mathrm{Res}}_{z=0} \operatorname{Tr} P |\mathcal{D}|^{-z}$.

Main tools:

- Heat kernel expansion $\operatorname{Tr}\left(e^{-t\mathcal{D}^2}\right) \underset{t\downarrow 0}{\sim} \sum_{k\geq 0} a_k(\mathcal{D}^2) t^{(k-d)/2}$
- Seeley-De Witt coefficients $a_k(\mathcal{D}^2) = \int_M$ geometrical inv.

The algebra \mathcal{A}_q is generated by $A=A^*,B,B^*$ fulfilling the relations

$$AB = q^2 BA$$
, $AB^* = q^{-2} B^* A$, $BB^* = q^{-2} A(1 - A)$, $B^* B = A(1 - q^2 A)$,

for some parameter 0 < q < 1.

Theorem[Dabrowski, Sitarz (2003)]

There are two inequivalent $\mathcal{U}_q(su(2))$ -equivariant reps π_\pm of \mathcal{A}_q on $\mathcal{H}_{\frac{1}{2}}$.

- The Hilbert space $\mathcal{H}=\mathcal{H}_{\frac{1}{2}}\oplus\mathcal{H}_{\frac{1}{2}}$ is equipped with an ONB $|l,m\rangle_{\pm}.$
- The representation $\pi := \pi_+ \oplus \pi_-$.
- The reality operator $J|l,m\rangle_{\pm}=i^{2m}p^m|l,-m\rangle_{\mp}$ with $p\in\mathbb{R}^+$.

Theorem[Dabrowski, Sitarz (2003)]

$$\mathcal{D} = \begin{pmatrix} 0 & \overline{\omega} \, D \\ \omega \, D & 0 \end{pmatrix}, \qquad D|l,m\rangle = \left[l + \frac{1}{2}\right] \, |l,m\rangle, \qquad [x] = \frac{q^x - q^{-x}}{q - q^{-1}}, \qquad \omega \in \mathbb{C} \setminus \{0\}$$

The algebra \mathcal{A}_q is generated by $A=A^*,B,B^*$ fulfilling the relations

$$AB = q^2 BA$$
, $AB^* = q^{-2} B^* A$, $BB^* = q^{-2} A(1 - A)$, $B^* B = A(1 - q^2 A)$,

for some parameter 0 < q < 1.

Theorem[Dabrowski, Sitarz (2003)]

There are two inequivalent $\mathcal{U}_q(su(2))$ -equivariant reps π_\pm of \mathcal{A}_q on $\mathcal{H}_{\frac{1}{2}}$.

- The Hilbert space $\mathcal{H}=\mathcal{H}_{\frac{1}{2}}\oplus\mathcal{H}_{\frac{1}{2}}$ is equipped with an ONB $|l,m\rangle_{\pm}.$
- The representation $\pi := \pi_+ \oplus \pi_-$.
- The reality operator $J|l,m\rangle_{\pm}=i^{2m}p^m|l,-m\rangle_{\mp}$ with $p\in\mathbb{R}^+$.

Theorem[Dabrowski, Sitarz (2003)]

$$\mathcal{D} = \begin{pmatrix} 0 & \overline{\omega} \, D \\ \omega \, D & 0 \end{pmatrix}, \qquad D|l,m\rangle = \left[l + \frac{1}{2}\right] \, |l,m\rangle, \qquad [x] = \frac{q^x - q^{-x}}{q - q^{-1}}, \qquad \omega \in \mathbb{C} \setminus \{0\}$$

The algebra \mathcal{A}_q is generated by $A=A^*,B,B^*$ fulfilling the relations

$$AB = q^2 BA$$
, $AB^* = q^{-2} B^* A$, $BB^* = q^{-2} A(1 - A)$, $B^* B = A(1 - q^2 A)$,

for some parameter 0 < q < 1.

Theorem[Dabrowski, Sitarz (2003)]

There are two inequivalent $\mathcal{U}_q(su(2))$ -equivariant reps π_\pm of \mathcal{A}_q on $\mathcal{H}_{\frac{1}{2}}$.

- The Hilbert space $\mathcal{H}=\mathcal{H}_{\frac{1}{2}}\oplus\mathcal{H}_{\frac{1}{2}}$ is equipped with an ONB $|l,m\rangle_{\pm}.$
- The representation $\pi := \pi_+ \oplus \pi_-$.
- The reality operator $J|l,m\rangle_{\pm}=i^{2m}p^m|l,-m\rangle_{\mp}$ with $p\in\mathbb{R}^+$.

Theorem[Dabrowski, Sitarz (2003)]

$$\mathcal{D} = \begin{pmatrix} 0 & \overline{\omega} \, D \\ \omega \, D & 0 \end{pmatrix}, \qquad D|l,m\rangle = \left[l + \frac{1}{2}\right] \, |l,m\rangle, \qquad [x] = \frac{q^x - q^{-x}}{q - q^{-1}}, \qquad \omega \in \mathbb{C} \setminus \{0\}$$

The algebra \mathcal{A}_q is generated by $A=A^*,B,B^*$ fulfilling the relations

$$AB = q^2 BA$$
, $AB^* = q^{-2} B^* A$, $BB^* = q^{-2} A(1 - A)$, $B^* B = A(1 - q^2 A)$,

for some parameter 0 < q < 1.

Theorem[Dabrowski, Sitarz (2003)]

There are two inequivalent $\mathcal{U}_q(su(2))$ -equivariant reps π_\pm of \mathcal{A}_q on $\mathcal{H}_{\frac{1}{2}}$.

- The Hilbert space $\mathcal{H}=\mathcal{H}_{\frac{1}{2}}\oplus\mathcal{H}_{\frac{1}{2}}$ is equipped with an ONB $|l,m\rangle_{\pm}.$
- The representation $\pi := \pi_+ \oplus \pi_-$.
- The reality operator $J|l,m\rangle_{\pm}=i^{2m}p^m|l,-m\rangle_{\mp}$ with $p\in\mathbb{R}^+$

Theorem[Dabrowski, Sitarz (2003)]

$$\mathcal{D} = \begin{pmatrix} 0 & \overline{\omega} \, D \\ \omega \, D & 0 \end{pmatrix}, \qquad D|l,m\rangle = \left[l + \frac{1}{2}\right] \, |l,m\rangle, \qquad [x] = \frac{q^x - q^{-x}}{q - q^{-1}}, \qquad \omega \in \mathbb{C} \setminus \{0\}$$

The algebra \mathcal{A}_q is generated by $A=A^*,B,B^*$ fulfilling the relations

$$AB = q^2 BA$$
, $AB^* = q^{-2} B^* A$, $BB^* = q^{-2} A(1 - A)$, $B^* B = A(1 - q^2 A)$,

for some parameter 0 < q < 1.

Theorem[Dabrowski, Sitarz (2003)]

There are two inequivalent $\mathcal{U}_q(su(2))$ -equivariant reps π_\pm of \mathcal{A}_q on $\mathcal{H}_{\frac{1}{2}}$.

- The Hilbert space $\mathcal{H}=\mathcal{H}_{\frac{1}{2}}\oplus\mathcal{H}_{\frac{1}{2}}$ is equipped with an ONB $|l,m\rangle_{\pm}.$
- The representation $\pi := \pi_+ \oplus \pi_-$.
- \bullet The reality operator $J|l,m\rangle_{\pm}=i^{2m}p^m|l,-m\rangle_{\mp}$ with $p\in\mathbb{R}^+.$

Theorem[Dabrowski, Sitarz (2003)]

$$\mathcal{D} = \begin{pmatrix} 0 & \overline{\omega} \, D \\ \omega \, D & 0 \end{pmatrix}, \qquad D|l,m\rangle = \left[l + \tfrac{1}{2}\right] \, |l,m\rangle, \qquad [x] = \frac{q^x - q^{-x}}{q - q^{-1}}, \qquad \omega \in \mathbb{C} \setminus \{0\}$$

The algebra \mathcal{A}_q is generated by $A=A^*,B,B^*$ fulfilling the relations

$$AB = q^2 B A,$$
 $AB^* = q^{-2} B^* A,$ $BB^* = q^{-2} A (1 - A),$ $B^* B = A (1 - q^2 A),$

for some parameter 0 < q < 1.

Theorem[Dabrowski, Sitarz (2003)]

There are two inequivalent $\mathcal{U}_q(su(2))$ -equivariant reps π_\pm of \mathcal{A}_q on $\mathcal{H}_{\frac{1}{2}}$.

- The Hilbert space $\mathcal{H}=\mathcal{H}_{\frac{1}{2}}\oplus\mathcal{H}_{\frac{1}{2}}$ is equipped with an ONB $|l,m\rangle_{\pm}.$
- The representation $\pi := \pi_+ \oplus \pi_-$.
- The reality operator $J|l,m\rangle_{\pm}=i^{2m}p^m|l,-m\rangle_{\mp}$ with $p\in\mathbb{R}^+.$

Theorem[Dabrowski, Sitarz (2003)]

$$\mathcal{D} = \begin{pmatrix} 0 & \overline{\omega}\,D \\ \omega\,D & 0 \end{pmatrix}, \qquad D|l,m\rangle = \left[l + \tfrac{1}{2}\right]\,|l,m\rangle, \qquad [x] = \frac{q^x - q^{-x}}{q - q^{-1}}, \qquad \omega \in \mathbb{C} \setminus \{0\}$$

- $(\mathcal{A}_q, \mathcal{H}, \mathcal{D})$ does not satisfy the regularity axiom! Although $\pi(\mathcal{A}_q), [\mathcal{D}, \pi(\mathcal{A}_q)] \in \mathcal{B}(\mathcal{H})$, but $[|\mathcal{D}|, [\mathcal{D}, \pi(\mathcal{A}_q)]] \notin \mathcal{B}(\mathcal{H})$.
- How to define ΨDO 's? What should be the notion of dimension spectrum?
- q-mutators [Neshveyev, Tuset (2005)]

$$|\mathcal{D}|[\mathcal{D},\pi(a)]-\chi^{-1}[\mathcal{D},\pi(a)]|\mathcal{D}|=B(z,a)|\mathcal{D}|^0, \qquad \text{ with } \chi:=\begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}$$

Proposition [M.E., lochum, Sitarz (2012)

Let ${\mathcal B}$ be an algebra, generated by elements of the form

$$|\mathcal{D}|^z \omega |\mathcal{D}|^{-z}$$

for any $z \in \mathbb{C}$ and any $\omega \in \Omega_D(\mathcal{A}_q)$:

$$\omega = a_0[\mathcal{D}, a_1] \cdots [\mathcal{D}, a_k], \text{ where } k \geq 0 \text{ and } a_j \in \mathcal{A}_q, \text{ with } 0 \leq j \leq k.$$

Then $\mathcal{B} \subset {
m op}^0(\mathcal{A}_q)$ i.e. it preserves ${
m Dom}(|\mathcal{D}|^s) \subset \mathcal{H}$ for every $s \in \mathbb{R}$

- $(\mathcal{A}_q, \mathcal{H}, \mathcal{D})$ does not satisfy the regularity axiom! Although $\pi(\mathcal{A}_q), [\mathcal{D}, \pi(\mathcal{A}_q)] \in \mathcal{B}(\mathcal{H})$, but $[|\mathcal{D}|, [\mathcal{D}, \pi(\mathcal{A}_q)]] \notin \mathcal{B}(\mathcal{H})$.
- How to define ΨDO 's? What should be the notion of dimension spectrum?
- q-mutators [Neshveyev, Tuset (2005)]

$$|\mathcal{D}|[\mathcal{D},\pi(a)]-\chi^{-1}[\mathcal{D},\pi(a)]|\mathcal{D}|=B(z,a)|\mathcal{D}|^0, \qquad \text{ with } \chi:=\begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}$$

Proposition [M.E., lochum, Sitarz (2012)]

Let ${\mathcal B}$ be an algebra, generated by elements of the form

$$|\mathcal{D}|^z \omega |\mathcal{D}|^{-z}$$

for any $z \in \mathbb{C}$ and any $\omega \in \Omega_D(\mathcal{A}_q)$:

$$\omega = a_0[\mathcal{D}, a_1] \cdots [\mathcal{D}, a_k], \text{ where } k \geq 0 \text{ and } a_j \in \mathcal{A}_q, \text{ with } 0 \leq j \leq k.$$

Then $\mathcal{B} \subset \operatorname{op}^0(\mathcal{A}_q)$ i.e. it preserves $\operatorname{Dom}(|\mathcal{D}|^s) \subset \mathcal{H}$ for every $s \in \mathbb{R}$

- $(\mathcal{A}_q, \mathcal{H}, \mathcal{D})$ does not satisfy the regularity axiom! Although $\pi(\mathcal{A}_q), [\mathcal{D}, \pi(\mathcal{A}_q)] \in \mathcal{B}(\mathcal{H})$, but $[|\mathcal{D}|, [\mathcal{D}, \pi(\mathcal{A}_q)]] \notin \mathcal{B}(\mathcal{H})$.
- How to define ΨDO 's? What should be the notion of dimension spectrum?
- q-mutators [Neshveyev, Tuset (2005)]

$$|\mathcal{D}|[\mathcal{D},\pi(a)]-\chi^{-1}[\mathcal{D},\pi(a)]|\mathcal{D}|=B(z,a)|\mathcal{D}|^0, \qquad \text{with } \chi:=\begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}$$

Proposition [M.E., lochum, Sitarz (2012)

Let ${\mathcal B}$ be an algebra, generated by elements of the form

$$|\mathcal{D}|^z \omega |\mathcal{D}|^{-z}$$

for any $z \in \mathbb{C}$ and any $\omega \in \Omega_D(\mathcal{A}_q)$:

$$\omega = a_0[\mathcal{D}, a_1] \cdots [\mathcal{D}, a_k], \text{ where } k \geq 0 \text{ and } a_j \in \mathcal{A}_q, \text{ with } 0 \leq j \leq k.$$

Then $\mathcal{B} \subset \operatorname{op}^0(\mathcal{A}_q)$ i.e. it preserves $\operatorname{Dom}(|\mathcal{D}|^s) \subset \mathcal{H}$ for every $s \in \mathbb{R}$

- $(\mathcal{A}_q, \mathcal{H}, \mathcal{D})$ does not satisfy the regularity axiom! Although $\pi(\mathcal{A}_q), [\mathcal{D}, \pi(\mathcal{A}_q)] \in \mathcal{B}(\mathcal{H})$, but $[|\mathcal{D}|, [\mathcal{D}, \pi(\mathcal{A}_q)]] \notin \mathcal{B}(\mathcal{H})$.
- How to define ΨDO 's? What should be the notion of dimension spectrum?
- q-mutators [Neshveyev, Tuset (2005)]

$$|\mathcal{D}|[\mathcal{D},\pi(a)] - \chi^{-1}[\mathcal{D},\pi(a)]|\mathcal{D}| = B(z,a)|\mathcal{D}|^0, \qquad \quad \text{with } \chi := \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}$$

Proposition [M.E., Iochum, Sitarz (2012)]

Let ${\cal B}$ be an algebra, generated by elements of the form

$$|\mathcal{D}|^z \omega |\mathcal{D}|^{-z}$$

for any $z \in \mathbb{C}$ and any $\omega \in \Omega_D(\mathcal{A}_q)$:

$$\omega = a_0[\mathcal{D}, a_1] \cdots [\mathcal{D}, a_k], \text{ where } k \geq 0 \text{ and } a_j \in \mathcal{A}_q, \text{ with } 0 \leq j \leq k.$$

Then $\mathcal{B} \subset \operatorname{op}^0(\mathcal{A}_q)$ i.e. it preserves $\operatorname{Dom}(|\mathcal{D}|^s) \subset \mathcal{H}$ for every $s \in \mathbb{R}$.

Theorem [M.E., lochum, Sitarz (2012)]

For any $b \in \mathcal{B}$, the set of poles of the spectral function $\zeta^b_{\mathcal{D}}: s \mapsto \operatorname{Tr}(b|\mathcal{D}|^{-s})$ is a subset of $-\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z}$ and the poles are at most of the second order.

Corollary

With the identification of \mathcal{B} as the algebra of pseudodifferential operators of order ≤ 0 , the dimension spectrum of the $\mathcal{U}_q(su(2))$ -equivariant Podleś sphere is

$$\operatorname{Sd}(S_q^2) = -\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z},$$

and the multiplicity of every point in $Sd(S_q^2)$ is 2.

- point, since it is 0-summable;
- singular manifold, since the poles are of second order;
- fractal due to complex numbers in Sd

Theorem [M.E., lochum, Sitarz (2012)]

For any $b \in \mathcal{B}$, the set of poles of the spectral function $\zeta^b_{\mathcal{D}}: s \mapsto \operatorname{Tr}(b|\mathcal{D}|^{-s})$ is a subset of $-\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z}$ and the poles are at most of the second order.

Corollary

With the identification of $\mathcal B$ as the algebra of pseudodifferential operators of order ≤ 0 , the dimension spectrum of the $\mathcal U_q(su(2))$ -equivariant Podleś sphere is

$$\operatorname{Sd}(S_q^2) = -\mathbb{N} + i \frac{2\pi}{\log q} \, \mathbb{Z},$$

and the multiplicity of every point in $Sd(S_q^2)$ is 2.

- point, since it is 0-summable;
- singular manifold, since the poles are of second order
- fractal due to complex numbers in Sd.

Theorem [M.E., lochum, Sitarz (2012)]

For any $b \in \mathcal{B}$, the set of poles of the spectral function $\zeta^b_{\mathcal{D}}: s \mapsto \operatorname{Tr}(b|\mathcal{D}|^{-s})$ is a subset of $-\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z}$ and the poles are at most of the second order.

Corollary

With the identification of $\mathcal B$ as the algebra of pseudodifferential operators of order ≤ 0 , the dimension spectrum of the $\mathcal U_q(su(2))$ -equivariant Podleś sphere is

$$\operatorname{Sd}(S_q^2) = -\mathbb{N} + i \frac{2\pi}{\log q} \, \mathbb{Z},$$

and the multiplicity of every point in $Sd(S_q^2)$ is 2.

- point, since it is 0-summable
- singular manifold, since the poles are of second order;
- fractal due to complex numbers in Sd.

Theorem [M.E., lochum, Sitarz (2012)]

For any $b \in \mathcal{B}$, the set of poles of the spectral function $\zeta^b_{\mathcal{D}}: s \mapsto \operatorname{Tr}(b|\mathcal{D}|^{-s})$ is a subset of $-\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z}$ and the poles are at most of the second order.

Corollary

With the identification of $\mathcal B$ as the algebra of pseudodifferential operators of order ≤ 0 , the dimension spectrum of the $\mathcal U_q(su(2))$ -equivariant Podleś sphere is

$$\operatorname{Sd}(S_q^2) = -\mathbb{N} + i \frac{2\pi}{\log q} \, \mathbb{Z},$$

and the multiplicity of every point in $Sd(S_q^2)$ is 2.

- point, since it is 0-summable;
- singular manifold, since the poles are of second order
- fractal due to complex numbers in Sd

Theorem [M.E., lochum, Sitarz (2012)]

For any $b \in \mathcal{B}$, the set of poles of the spectral function $\zeta^b_{\mathcal{D}}: s \mapsto \operatorname{Tr}(b|\mathcal{D}|^{-s})$ is a subset of $-\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z}$ and the poles are at most of the second order.

Corollary

With the identification of $\mathcal B$ as the algebra of pseudodifferential operators of order ≤ 0 , the dimension spectrum of the $\mathcal U_q(su(2))$ -equivariant Podleś sphere is

$$\operatorname{Sd}(S_q^2) = -\mathbb{N} + i \frac{2\pi}{\log q} \, \mathbb{Z},$$

and the multiplicity of every point in $Sd(S_q^2)$ is 2.

- point, since it is 0-summable;
- singular manifold, since the poles are of second order;
- fractal due to complex numbers in Sd

Theorem [M.E., lochum, Sitarz (2012)]

For any $b \in \mathcal{B}$, the set of poles of the spectral function $\zeta^b_{\mathcal{D}}: s \mapsto \operatorname{Tr}(b|\mathcal{D}|^{-s})$ is a subset of $-\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z}$ and the poles are at most of the second order.

Corollary

With the identification of \mathcal{B} as the algebra of pseudodifferential operators of order ≤ 0 , the dimension spectrum of the $\mathcal{U}_q(su(2))$ -equivariant Podleś sphere is

$$\operatorname{Sd}(S_q^2) = -\mathbb{N} + i \frac{2\pi}{\log q} \mathbb{Z},$$

and the multiplicity of every point in $Sd(S_q^2)$ is 2.

- point, since it is 0-summable;
- singular manifold, since the poles are of second order;
- fractal due to complex numbers in Sd.

"Pure gravity" spectral action

Proposition [M.E., Iochum, Sitarz (2012)]

For a suitable function f the spectral action on standard Podleś sphere reads

$$\operatorname{Tr} f(|\mathcal{D}|/\Lambda) = \sum_{\alpha \in \operatorname{Sd}_1} \sum_{n=0}^{2} a_{\alpha,n} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f_{\alpha,k} (\log \Lambda)^{n-k} \Lambda^{\alpha}$$

where $f_{\alpha,k}:=\langle h_{\alpha,k},f\rangle$ and $h_{\alpha,k}:=\mathcal{L}^{-1}(s^{-\alpha}\log^k s)$ is a (distributional) inverse Laplace transform. The coefficients are determined by

$$a_{\alpha,n} := n! \operatorname{Res}_{s=\alpha} ((s-\alpha)^n \Gamma(s) \zeta_{\mathcal{D}}(s))$$

$$\operatorname{Tr} f(|\mathcal{D}|/\Lambda) = c_2(|\mathcal{D}|, f) \log^2 \Lambda + c_1(|\mathcal{D}|, f) \log \Lambda + \sum_{a \in \mathbb{Z}^*} \left[d_1(|\mathcal{D}|, f, a) \log \Lambda + d_2(|\mathcal{D}|, f, a) \right] \Lambda^{ia} + \operatorname{O}\left((\log^2 \Lambda) \Lambda^{-2} \right)$$

"Pure gravity" spectral action

Proposition [M.E., Iochum, Sitarz (2012)]

For a suitable function f the spectral action on standard Podleś sphere reads

$$\operatorname{Tr} f(|\mathcal{D}|/\Lambda) = \sum_{\alpha \in \operatorname{Sd}_1} \sum_{n=0}^{2} a_{\alpha,n} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f_{\alpha,k} (\log \Lambda)^{n-k} \Lambda^{\alpha}$$

where $f_{\alpha,k}:=\langle h_{\alpha,k},f\rangle$ and $h_{\alpha,k}:=\mathcal{L}^{-1}(s^{-\alpha}\log^k s)$ is a (distributional) inverse Laplace transform. The coefficients are determined by

$$a_{\alpha,n} := n! \operatorname{Res}_{s=\alpha} ((s-\alpha)^n \Gamma(s) \zeta_{\mathcal{D}}(s))$$

$$\operatorname{Tr} f(|\mathcal{D}|/\Lambda) = c_2(|\mathcal{D}|, f) \log^2 \Lambda + c_1(|\mathcal{D}|, f) \log \Lambda + \sum_{a \in \mathbb{Z}^*} \left[d_1(|\mathcal{D}|, f, a) \log \Lambda + d_2(|\mathcal{D}|, f, a) \right] \Lambda^{ia} + \operatorname{O}\left((\log^2 \Lambda) \Lambda^{-2} \right)$$

Introducing gauge bosons

Fluctuation $\mathcal{D} \to \mathcal{D}_{\mathbb{A}} = \mathcal{D} + \mathbb{A}$, where $\mathbb{A} = \sum_i a_i [\mathcal{D}, b_i]$, for $a_i, b_i \in \mathcal{A}$, is selfadjoint. \mathbb{A} - a noncommutative one-form \Leftrightarrow gauge potential

Proposition [M.E., lochum, Sitarz (2012)]

$$\operatorname{Tr} f(|\mathcal{D}_{\mathbb{A}}|/\Lambda) = c_2(|\mathcal{D}|, f) \log^2 \Lambda + c_1(|\mathcal{D}|, f) \log \Lambda + \sum_{a \in \mathbb{Z}^*} \left[d_1(|\mathcal{D}|, f, a) \log \Lambda + d_2(|\mathcal{D}|, f, a) \right] \Lambda^{ia} + \operatorname{O}\left((\log^2 \Lambda) \Lambda^{-2} \right)$$

Corollary

For large energies the gauge fields become negligible

$$\operatorname{Tr} f(|\mathcal{D}_{\mathbb{A}}|/\Lambda) = \operatorname{Tr} f(|\mathcal{D}|/\Lambda) + O((\log^2 \Lambda) \Lambda^{-2})$$

Introducing gauge bosons

Fluctuation $\mathcal{D} \to \mathcal{D}_{\mathbb{A}} = \mathcal{D} + \mathbb{A}$, where $\mathbb{A} = \sum_i a_i [\mathcal{D}, b_i]$, for $a_i, b_i \in \mathcal{A}$, is selfadjoint. \mathbb{A} - a noncommutative one-form \Leftrightarrow gauge potential

Proposition [M.E., lochum, Sitarz (2012)]

$$\operatorname{Tr} f(|\mathcal{D}_{\mathbb{A}}|/\Lambda) = c_2(|\mathcal{D}|, f) \log^2 \Lambda + c_1(|\mathcal{D}|, f) \log \Lambda +$$

$$+ \sum_{a \in \mathbb{Z}^*} \left[d_1(|\mathcal{D}|, f, a) \log \Lambda + d_2(|\mathcal{D}|, f, a) \right] \Lambda^{ia} + \operatorname{O}\left((\log^2 \Lambda) \Lambda^{-2} \right)$$

Corollary

For large energies the gauge fields become negligible

$$\operatorname{Tr} f(|\mathcal{D}_{\mathbb{A}}|/\Lambda) = \operatorname{Tr} f(|\mathcal{D}|/\Lambda) + O((\log^2 \Lambda) \Lambda^{-2})$$

Introducing gauge bosons

Fluctuation $\mathcal{D} \to \mathcal{D}_{\mathbb{A}} = \mathcal{D} + \mathbb{A}$, where $\mathbb{A} = \sum_i a_i [\mathcal{D}, b_i]$, for $a_i, b_i \in \mathcal{A}$, is selfadjoint.

 $\mathbb A$ - a noncommutative one-form \Leftrightarrow gauge potential

Proposition [M.E., lochum, Sitarz (2012)]

$$\operatorname{Tr} f(|\mathcal{D}_{\mathbb{A}}|/\Lambda) = c_{2}(|\mathcal{D}|, f) \log^{2} \Lambda + c_{1}(|\mathcal{D}|, f) \log \Lambda + \sum_{a \in \mathbb{Z}^{*}} \left[d_{1}(|\mathcal{D}|, f, a) \log \Lambda + d_{2}(|\mathcal{D}|, f, a) \right] \Lambda^{ia} + \operatorname{O}\left((\log^{2} \Lambda) \Lambda^{-2}\right)$$

Corollary

For large energies the gauge fields become negligible

$$\operatorname{Tr} f(|\mathcal{D}_{\mathbb{A}}|/\Lambda) = \operatorname{Tr} f(|\mathcal{D}|/\Lambda) + O((\log^2 \Lambda) \Lambda^{-2}).$$

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like:
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - ullet There is an oscillatory behaviour in Λ
 - Gauge fields are not relevant at large energies

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - There is an oscillatory behaviour in Λ
 - Gauge fields are not relevant at large energies

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - There is an oscillatory behaviour in A
 - Gauge fields are not relevant at large energies

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - There is an oscillatory behaviour in A
 - Gauge fields are not relevant at large energies

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$
 - There is an oscillatory behaviour in Λ .
 - Gauge fields are not relevant at large energies

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$
 - There is an oscillatory behaviour in A
 - Gauge fields are not relevant at large energies

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - There is an oscillatory behaviour in Λ .
 - Gauge fields are not relevant at large energies.

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - There is an oscillatory behaviour in Λ .
 - Gauge fields are not relevant at large energies.

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - There is an oscillatory behaviour in Λ .
 - Gauge fields are not relevant at large energies.

- Podleś sphere the first truly noncommutative space.
- From dimension point of view it behaves like a
 - point, since it is 0-summable;
 - singular manifold, since the poles are of second order;
 - fractal due to complex numbers in Sd.
- "q-regularity" instead of regularity
- An exact formula for the spectral action is available.
 - The leading term is $\log^2 \Lambda$.
 - There is an oscillatory behaviour in Λ .
 - Gauge fields are not relevant at large energies.

The bibliography

Thank you for your attention!

- A. Connes, H. Moscovici: The local index formula in Noncommutative Geometry, GAFA 5 (1995) 174.
- A.H. Chamseddine, A. Connes: The spectral action principle, Commun. Math. Phys. 186 (1997), 731—750.
- A.H. Chamseddine, A. Connes, M. Marcolli: Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991.
- L. Dabrowski, A. Sitarz: Dirac operator on the standard Podleś quantum sphere, Noncommutative geometry and quantum groups, pp. 49–58, Banach Center Publ. 61, PAN, Warsaw, 2003, math.QA/arXiv:0209048
- S. Neshveyev, L. Tuset: A Local Index Formula for the Quantum Sphere, Commun. Math. Phys. 254 (2005) 323–341.
- M. Eckstein, B. lochum, A. Sitarz in preparation arXiv:12xx.xx.

Hopf algebra equivariance of spectral triples

H-equivariant module

Let V be an $\mathcal A$ -module, H be a Hopf algebra and also let V and $\mathcal A$ be H-modules. We say that V is H-equivariant if

$$h(\alpha v) = (h_{(1)} \triangleright \alpha) (h_{(2)} v),$$

$$\forall h \in H, \alpha \in \mathcal{A}, v \in V$$

H-equivariant representation

A bounded representation π of $\mathcal A$ on $\mathcal H$ is called H-equivariant if there exists a dense linear subspace V of $\mathcal H$ such that V is an H-equivariant $\mathcal A$ -module and $\pi(\alpha)v=\alpha v$, $\forall\,v\in V,\,\alpha\in\mathcal A.$

H-equivariant Dirac operator

 \mathcal{D} is H-equivariant if $\mathcal{D}h = h\mathcal{D}$, $\forall h \in H$.

$\mathcal{U}_q(su(2))$ -equivariant rep of the standard Podleś sphere

$$\begin{split} A|l,m\rangle = & A_{l,m}^{+}|l+1,m\rangle + A_{l,m}^{0}|l,m\rangle + A_{l,m}^{-}|l-1,m\rangle,\\ B|l,m\rangle = & B_{l,m}^{+}|l+1,m+1\rangle + B_{l,m}^{0}|l,m+1\rangle + B_{l,m}^{-}|l-1,m+1\rangle,\\ B^{*}|l,m\rangle = & \widetilde{B}_{l,m}^{+}|l+1,m-1\rangle + \widetilde{B}_{l,m}^{0}|l,m-1\rangle + \widetilde{B}_{l,m}^{-}|l-1,m-1\rangle, \end{split}$$

$$\begin{split} B_{l,m}^+ &:= q^m \sqrt{[l+m+1][l+m+2]} \; \alpha_l^+, \quad \widetilde{B}_{l,m}^+ &:= q^{m-1} \sqrt{[l-m+2][l-m+1]} \; \alpha_{l+1}^-, \\ B_{l,m}^0 &:= q^m \sqrt{[l+m+1][l-m]} \; \alpha_l^0, \qquad \qquad \widetilde{B}_{l,m}^0 &:= q^{m-1} \sqrt{[l+m][l-m+1]} \; \alpha_l^0, \\ B_{l,m}^- &:= q^m \sqrt{[l-m][l-m-1]} \; \alpha_l^-, \qquad \qquad \widetilde{B}_{l,m}^- &:= q^{m-1} \sqrt{[l+m][l+m-1]} \; \alpha_{l-1}^+, \end{split}$$

$$\begin{split} A_{l,m}^+ &:= -q^{m+l+\frac{1}{2}} \sqrt{[l-m+1][l+m+1]} \; \alpha_l^+ \\ A_{l,m}^0 &:= q^{-\frac{1}{2}} \frac{1}{1+q^2} \left([l-m+1][l+m] - q^2[l-m][l+m+1] \right) \alpha_l^0 + \frac{1}{1+q^2}, \\ A_{l,m}^- &:= q^{m-l-\frac{1}{2}} \sqrt{[l-m][l+m]} \; \alpha_l^- \; . \end{split}$$

Podleś sphere $\to S^2$

For $q \to 1$

• $\mathcal{A}(S_1^2) \cong C^{\infty}(S^2)$ with generators

$$A = \frac{1}{2}(1-z),$$
 $B = \frac{1}{2}(x+iy),$ $x^2 + y^2 + z^2 = 1$

- \bullet $H_{\frac{1}{2}}\cong L^2(S^2)$ with $|l,m\rangle_{\pm}=Y_l^m$
- ullet $[x]_q o x$, hence $\mathcal{D}_{S^2_q} o \mathcal{D}_{S^2}$
- We have a q-analogue of the Hopf fibration

$$SU(2) \cong S^3 \xrightarrow{U(1)} S^2$$
 $SU_q(2) \cong S_q^3 \xrightarrow{U(1)} S_q^2$

Formulas for the Laplace transform

Lemma 1

For $k \in \mathbb{N}$ and $\alpha \in \mathbb{C} \setminus -\mathbb{N}$, the inverse Laplace transform $h_{\alpha,k}$ of the function $s \in \mathbb{R}^+ \mapsto s^{-\alpha} \log^k s$ reads

$$h_{\alpha,k}(t) = (-1)^k \frac{d^k}{d\alpha^k} \left(\frac{t^{\alpha - 1}}{\Gamma(\alpha)} \right), \quad t > 0.$$

Lemma 2

The distributional inverse Laplace transform of $s \in \mathbb{R}^+ \mapsto \Theta(s) \log^k s$ where $0 \neq k \in \mathbb{N}$ is given by

$$\mathcal{L}^{-1}\big(\Theta(s)\,\log^k s\big)(t) = (-1)^k \big[\sum_{j=1}^k \binom{k}{j} \gamma^{j-1} \left[\operatorname{Fp}\left(\frac{\Theta(t)}{t}\right)\right]^{*j} + \gamma^k \,\delta(t)\big], \quad t>0.$$

Lemma 3

The distributional inverse Laplace transform $h_{-n,k}$ of $s\in\mathbb{R}\mapsto\Theta(s)\,s^n\,\log^k s$ where $n\in\mathbb{N}$ and $0\neq k\in\mathbb{N}$ is given by

$$\begin{split} h_{-n,k}(t) &= (-1)^{k+n} n! \sum_{j=1}^k \binom{k}{j} \gamma^{j-1} \sum_{i=1}^j (-1)^{i+1} \, H(n)^{i-1} \, \operatorname{Fp}\left(\frac{\Theta(t)}{t^{n+1}}\right) * \left[\operatorname{Fp}\left(\frac{\Theta(t)}{t}\right)\right]^{*(j-i)} \\ &+ (-1)^k [\gamma^{-1} \left((1-\gamma H(n))^k - 1 \right) + \gamma^k] \, \delta^{(n)}(t), \quad t > 0. \end{split}$$

The twist

ullet To find a proper Hochschild cocycle on S_q^2 one need to introduce a twist

$$\operatorname{Res}_{z=0} \operatorname{Tr} \mathcal{D}^{-2z} \to \operatorname{Res}_{z=2} \operatorname{Tr} K^{-2} \mathcal{D}^{-2z},$$

with K - the group-like generator of $\mathcal{U}_q(\mathfrak{su}(2))$.

- The twist affects the dimension spectrum
 - S_q^2 becomes 2-summable;
 - Sd becomes simple;
 - but the complex poles persist.
- The regularity axiom is still not satisfied.
- Twisted dimension spectrum, twisted spectral action?

