Locality in integrable QFTs characterization and explicit examples

Daniela Cadamuro

University of Göttingen

Leipzig, 23 November 2012

Partially joint work with H. Bostelmann

• What do I mean by "factorizing scattering models"?

- Relativistic quantum field theory on 1+1 dimensional Minkowski space
- A specific class of QFT: models with factorizing scattering matrix
- Here: not in a thermodynamical (euclidean) setting, but interested in local observables of the QFT

What do I mean by "factorizing scattering models"?

- Relativistic quantum field theory on 1+1 dimensional Minkowski space
- A specific class of QFT: models with factorizing scattering matrix
- Here: not in a thermodynamical (euclidean) setting, but interested in local observables of the QFT

Local observables

- Physical meaning of "measurements"
- Mathematically, linear bounded or unbounded operators associated with bounded regions in Minkowski space, so that operators associated with spacelike separated regions commute

Topic

- "Old" constructive approach: form factor program
 - Aimed at constructing pointlike quantum fields in terms of their matrix elements between asymptotic scattering states
 - Construct *n*-point functions as infinite series of integrals of these matrix elements
 - Problem: show the convergence of *n*-point functions

Topic

- "Old" constructive approach: form factor program
 - Aimed at constructing pointlike quantum fields in terms of their matrix elements between asymptotic scattering states
 - Construct *n*-point functions as infinite series of integrals of these matrix elements
 - Problem: show the convergence of *n*-point functions
- "New" constructive approach: wedge algebras (Schroer, ..., Lechner)
 - Construct observables localized in wedges (easier to handle!)
 - Study properties of matrix elements between multi-particle states of non-free fields, described by deformed creators and annihilators satisfying a deformed version of the canonical commutation relations
 - Obtain local observables associated with bounded regions as the intersection of the respective sets of local observables associated with the "right" and "left" wedges
 - Proof that this intersection of algebras is non-trivial with a very abstract argument

- Here: How to obtain more information about the explicit form of the local observables
 - Study properties of certain matrix elements of these operators
 - Find a characterization of these operators in terms of these properties

-

Models with factorizing scattering matrix

Physical idea of the system:

- Imagine a system of spin-0 bosons of mass μ > 0 moving in 1 spatial dimension.
- Two bosons (of different speed) will scatter phase $S(\theta_1 \theta_2)$ (θ "rapidity") is the two-particle scattering function.
- Multi-particle scattering is just a composition of subsequent 2-particle processes ("factorizing scattering matrix").
- S = 1: free field; S = -1: Ising model

Task: Given a function *S*, construct a corresponding quantum field theory.

Construction of QFTs with factorizing scattering matrix

The theory is constructed as a deformation of a free field.

• Zamolodchikov-Faddeev algebra:

$$\begin{aligned} z(\theta_1)z(\theta_2) &= S(\theta_1 - \theta_2) \, z(\theta_2) z(\theta_1) \,, \\ z^{\dagger}(\theta_1)z^{\dagger}(\theta_2) &= S(\theta_1 - \theta_2) \, z^{\dagger}(\theta_2) z^{\dagger}(\theta_1) \,, \\ z(\theta_1)z^{\dagger}(\theta_2) &= S(\theta_2 - \theta_1) \, z^{\dagger}(\theta_2) z(\theta_1) + \delta(\theta_1 - \theta_2) \cdot \mathbf{1}. \end{aligned}$$

 $z(\theta), z^{\dagger}(\theta)$ "deformed" creators and annihilators. The "*S*-symmetric" Fock space carries a representation of the Poincaré group including the space-time reflection U(j).

Construction of QFTs with factorizing scattering matrix

The theory is constructed as a deformation of a free field.

• Zamolodchikov-Faddeev algebra:

$$\begin{aligned} z(\theta_1)z(\theta_2) &= S(\theta_1 - \theta_2) \, z(\theta_2) z(\theta_1) \,, \\ z^{\dagger}(\theta_1)z^{\dagger}(\theta_2) &= S(\theta_1 - \theta_2) \, z^{\dagger}(\theta_2) z^{\dagger}(\theta_1) \,, \\ z(\theta_1)z^{\dagger}(\theta_2) &= S(\theta_2 - \theta_1) \, z^{\dagger}(\theta_2) z(\theta_1) + \delta(\theta_1 - \theta_2) \cdot \mathbf{1}. \end{aligned}$$

 $z(\theta), z^{\dagger}(\theta)$ "deformed" creators and annihilators. The "*S*-symmetric" Fock space carries a representation of the Poincaré group including the space-time reflection U(j).

• Quantum fields: With $\hat{f}^{\pm}(\theta) = \int d^2x \, f(x) \, \exp(\pm i p(\theta) x)$, define

$$\phi(f) := z^{\dagger}(\hat{f}^+) + z(\hat{f}^-), \quad \phi'(f) := U(j)\phi(f^j)U(j).$$

Wedge-local fields

- The fields ϕ, ϕ' are wedge-local:
 - $\mathcal{W}:$ standard right wedge; $\mathcal{W}':$ its causal complement (the left wedge). The fields fulfill

 $[\phi(f),\phi'(g)]=0 ext{ if supp } f\subset \mathcal{W}', ext{ supp } g\subset \mathcal{W}.$

• Interpretation: $\phi(x)$ an observable measurable in the infinite region $\mathcal{W}' + x$.

Local observables?

• We pass to the associated von Neumann algebras,

$$\mathfrak{A}(\mathcal{W}) = \{ \exp i\phi(f) \mid \operatorname{supp} f \subset \mathcal{W}' \}'$$

(for other wedges by covariance)

-

Local observables?

• We pass to the associated von Neumann algebras,

$$\mathfrak{A}(\mathcal{W}) = \{ \exp i\phi(f) \mid \operatorname{supp} f \subset \mathcal{W}' \}'$$

(for other wedges by covariance)

• For the standard double cone $\mathcal{O}_r = (\mathcal{W} - re_1) \cap (\mathcal{W}' + re_1)$, define

$$\mathfrak{A}(\mathcal{O}_r) := \mathfrak{A}(\mathcal{W} - re_1) \cap \mathfrak{A}(\mathcal{W}' + re_1)$$

• This gives a consistent, covariant local net of algebras.

Local observables?

We pass to the associated von Neumann algebras,

$$\mathfrak{A}(\mathcal{W}) = \{ \exp i\phi(f) \mid \operatorname{supp} f \subset \mathcal{W}' \}'$$

(for other wedges by covariance)

• For the standard double cone $\mathcal{O}_r = (\mathcal{W} - re_1) \cap (\mathcal{W}' + re_1)$, define

$$\mathfrak{A}(\mathcal{O}_r) := \mathfrak{A}(\mathcal{W} - re_1) \cap \mathfrak{A}(\mathcal{W}' + re_1)$$

- This gives a consistent, covariant local net of algebras.
- Are there any observables localized in bounded regions (double cones)?
 - The fields $\phi(f)$, $\phi'(f)$ are not (except S = 1)
 - Polynomials of the fields are not (except certain polynomials in S = -1)
 - Must take limits of power series in order to obtain local operators.

Size of local algebras

- Is the intersection $\mathfrak{A}(\mathcal{O}_r)$ non-trivial?
 - Result (Lechner 2006): The vacuum is cyclic for $\mathfrak{A}(\mathcal{O}_r)$.
 - Uses a very abstract argument called "modular nuclearity condition" (analytic condition on the scattering function) and split property for wedge algebra inclusions.
 - This is enough to do scattering theory and compute the S matrix.
 - However, it does not give us explicit examples.

Araki's expansion

Araki's expansion for the free scalar Bose field (S = 1):

Every quadratic form *A* on Fock space (and therefore bounded and unbounded operators, as well) of a certain regularity class can be expanded as

$$A = \sum_{m,n=0}^{\infty} \int \frac{d^m \theta d^n \eta}{m! n!} f_{mn}(\theta, \eta) a^{\dagger}(\theta_1) \dots a^{\dagger}(\theta_m) a(\eta_1) \dots a(\eta_n)$$

Coefficient functions f_{mn} are given by

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta}) = \left(\Omega, [\boldsymbol{a}(\theta_1),\ldots,[\boldsymbol{a}(\theta_m),[\boldsymbol{a}^{\dagger}(\eta_1),\ldots,[\boldsymbol{a}^{\dagger}(\eta_n),\boldsymbol{A}]\ldots]\Omega\right).$$

Araki's expansion

Araki's expansion for the free scalar Bose field (S = 1):

Every quadratic form *A* on Fock space (and therefore bounded and unbounded operators, as well) of a certain regularity class can be expanded as

$$A = \sum_{m,n=0}^{\infty} \int \frac{d^m \theta d^n \eta}{m! n!} f_{mn}(\theta, \eta) a^{\dagger}(\theta_1) \dots a^{\dagger}(\theta_m) a(\eta_1) \dots a(\eta_n)$$

Coefficient functions f_{mn} are given by

$$f_{mn}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \left(\Omega, [\boldsymbol{a}(\theta_1), \dots, [\boldsymbol{a}(\theta_m), [\boldsymbol{a}^{\dagger}(\eta_1), \dots, [\boldsymbol{a}^{\dagger}(\eta_n), \boldsymbol{A}] \dots] \Omega\right).$$

What if *A* is localized in the standard double cone \mathcal{O}_r ? [$A \in \mathcal{A}(\mathcal{O}_r)$]

- Write a, a^{\dagger} as Fourier transforms of time-zero fields ϕ, π .
- Basically, *f_{mn}* become Fourier transforms of functions of compact support.

- E - - E -

Characterization of local operators in the free field

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta}) = \left(\Omega, [\boldsymbol{a}(\theta_1),\ldots,[\boldsymbol{a}(\theta_m),[\boldsymbol{a}^{\dagger}(\eta_1),\ldots,[\boldsymbol{a}^{\dagger}(\eta_n),\boldsymbol{A}]\ldots]\Omega\right).$$

If *A* is local in \mathcal{O}_r , then there exist entire functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta}) = F_{m+n}(\theta_1,\ldots,\theta_m,\eta_1+i\pi,\ldots,\eta_n+i\pi).$$

Characterization of local operators in the free field

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta}) = \left(\Omega, [\boldsymbol{a}(\theta_1),\ldots,[\boldsymbol{a}(\theta_m),[\boldsymbol{a}^{\dagger}(\eta_1),\ldots,[\boldsymbol{a}^{\dagger}(\eta_n),\boldsymbol{A}]\ldots]\Omega\right).$$

If A is local in \mathcal{O}_r , then there exist entire functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta}) = F_{m+n}(\theta_1,\ldots,\theta_m,\eta_1+i\pi,\ldots,\eta_n+i\pi).$$

The F_k have the properties:

- They are symmetric in their arguments (due to the CCR),
- They are $2i\pi$ -periodic in each argument (due to $p(\theta)$ being periodic),
- They fulfill certain, *r*-dependent bounds in imaginary directions (Paley-Wiener).

These conditions are "if and only if" on the level of quadratic forms (remark on operator domains later).

11/25

Generalization of Araki's expansion

In our interacting models ($S \neq 1$), we can expand every quadratic form of a certain regularity class as

$$A = \sum_{m,n=0}^{\infty} \int \frac{d^m \theta d^n \eta}{m! n!} f_{mn}(\theta,\eta) z^{\dagger m}(\theta) z^n(\eta).$$

Generalization of Araki's expansion

In our interacting models ($S \neq 1$), we can expand every quadratic form of a certain regularity class as

$$A = \sum_{m,n=0}^{\infty} \int \frac{d^m \theta d^n \eta}{m! n!} f_{mn}(\theta,\eta) z^{\dagger m}(\theta) z^n(\eta).$$

- What are the coefficient functions *f_{mn}*?
 - General formula in terms of contracted matrix elements of A

$$f_{m,n}^{[\mathcal{A}]} := \sum_{\mathcal{C} \in \mathcal{C}_{m,n}} (-1)^{|\mathcal{C}|} \delta_{\mathcal{C}} \mathcal{S}_{\mathcal{C}}(heta, \eta) \langle \ell_{\mathcal{C}}(heta), \mathsf{Ar}_{\mathcal{C}}(\eta)
angle$$

 For special S-matrices (Lechner and Grosse 2007) a commutator formula from above works with a, a[†] replaced by z, z[†] and with [·, ·] replaced by a certain "deformed commutator" [·, ·]_S.

Generalization of Araki's expansion

In our interacting models ($S \neq 1$), we can expand every quadratic form of a certain regularity class as

$$A = \sum_{m,n=0}^{\infty} \int \frac{d^m \theta d^n \eta}{m! n!} f_{mn}(\theta,\eta) z^{\dagger m}(\theta) z^n(\eta).$$

- What are the coefficient functions f_{mn}?
 - General formula in terms of contracted matrix elements of A

$$f_{m,n}^{[\mathcal{A}]} := \sum_{\mathcal{C} \in \mathcal{C}_{m,n}} (-1)^{|\mathcal{C}|} \delta_{\mathcal{C}} \mathcal{S}_{\mathcal{C}}(heta, \eta) \langle \ell_{\mathcal{C}}(heta), \mathsf{Ar}_{\mathcal{C}}(\eta)
angle$$

- For special S-matrices (Lechner and Grosse 2007) a commutator formula from above works with a, a[†] replaced by z, z[†] and with [·, ·] replaced by a certain "deformed commutator" [·, ·]_S.
- We can compute the effect of
 - Poincaré transformations,
 - space-time reflections

on the coefficients f_{mn} .

If the quadratic form *A* is local in \mathcal{O}_r , then there exist meromorphic functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

 $f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta}) = F_{m+n}(\theta_1 + i0,\ldots,\theta_m + i0,\eta_1 + i\pi - i0,\ldots,\eta_n + i\pi - i0).$

If the quadratic form *A* is local in \mathcal{O}_r , then there exist meromorphic functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta})=F_{m+n}(\theta_1+i\boldsymbol{0},\ldots,\theta_m+i\boldsymbol{0},\eta_1+i\pi-i\boldsymbol{0},\ldots,\eta_n+i\pi-i\boldsymbol{0}).$$

The F_k have the properties (similar to Schroer/Wiesbrock 2000):

• They are S-symmetric: $F_k(\ldots \zeta_j, \zeta_{j+1}, \ldots) =$ \$ $F_k(\ldots \zeta_{j+1}, \zeta_j, \ldots)$.

13/25

If the quadratic form *A* is local in \mathcal{O}_r , then there exist meromorphic functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta})=F_{m+n}(\theta_1+i\boldsymbol{0},\ldots,\theta_m+i\boldsymbol{0},\eta_1+i\pi-i\boldsymbol{0},\ldots,\eta_n+i\pi-i\boldsymbol{0}).$$

The F_k have the properties (similar to Schroer/Wiesbrock 2000):

- They are *S*-symmetric: $F_k(\ldots \zeta_j, \zeta_{j+1}, \ldots) =$ *\$F_k(\ldots \zeta_{j+1}, \zeta_j, \ldots)*.
- They are S-periodic: $F_k(\ldots \zeta_j + 2i\pi \ldots) = \$F_k(\ldots \zeta_j, \ldots)$.

13/25

If the quadratic form *A* is local in \mathcal{O}_r , then there exist meromorphic functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta})=F_{m+n}(\theta_1+i\boldsymbol{0},\ldots,\theta_m+i\boldsymbol{0},\eta_1+i\pi-i\boldsymbol{0},\ldots,\eta_n+i\pi-i\boldsymbol{0}).$$

- They are S-symmetric: $F_k(\ldots \zeta_j, \zeta_{j+1}, \ldots) =$ \$ $F_k(\ldots \zeta_{j+1}, \zeta_j, \ldots)$.
- They are S-periodic: $F_k(\ldots \zeta_j + 2i\pi \ldots) =$ \$ $F_k(\ldots \zeta_j, \ldots)$.
- They have first-order poles at $\zeta_j \zeta_\ell = i\pi$, with $\operatorname{Res}_{\zeta_j \zeta_\ell = i\pi} F_k(\zeta) = \mathfrak{F}(1 \mathfrak{F})F_{k-2}(\hat{\zeta}).$

If the quadratic form *A* is local in \mathcal{O}_r , then there exist meromorphic functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta})=F_{m+n}(\theta_1+i\boldsymbol{0},\ldots,\theta_m+i\boldsymbol{0},\eta_1+i\pi-i\boldsymbol{0},\ldots,\eta_n+i\pi-i\boldsymbol{0}).$$

- They are S-symmetric: $F_k(\ldots \zeta_j, \zeta_{j+1}, \ldots) =$ \$ $F_k(\ldots \zeta_{j+1}, \zeta_j, \ldots)$.
- They are S-periodic: $F_k(\ldots \zeta_j + 2i\pi \ldots) =$ \$ $F_k(\ldots \zeta_j, \ldots)$.
- They have first-order poles at $\zeta_j \zeta_\ell = i\pi$, with Res $_{\zeta_j - \zeta_\ell = i\pi} F_k(\zeta) = \mathcal{F}(1 - \mathcal{F})F_{k-2}(\hat{\zeta}).$
- They fulfill certain L^2 -like bounds at the points Im $\boldsymbol{\zeta} = (0, \dots, 0, \pi, \dots, \pi)$, Im $\boldsymbol{\zeta} = (-\pi, \dots, -\pi, 0, \dots, 0)$.

If the quadratic form *A* is local in \mathcal{O}_r , then there exist meromorphic functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta})=F_{m+n}(\theta_1+i\boldsymbol{0},\ldots,\theta_m+i\boldsymbol{0},\eta_1+i\pi-i\boldsymbol{0},\ldots,\eta_n+i\pi-i\boldsymbol{0}).$$

- They are S-symmetric: $F_k(\ldots \zeta_j, \zeta_{j+1}, \ldots) =$ \$ $F_k(\ldots \zeta_{j+1}, \zeta_j, \ldots)$.
- They are S-periodic: $F_k(\ldots \zeta_j + 2i\pi \ldots) =$ \$ $F_k(\ldots \zeta_j, \ldots)$.
- They have first-order poles at $\zeta_j \zeta_\ell = i\pi$, with $\operatorname{Res}_{\zeta_j \zeta_\ell = i\pi} F_k(\zeta) = \mathfrak{F}(1 \mathfrak{F})F_{k-2}(\hat{\zeta}).$
- They fulfill certain L^2 -like bounds at the points Im $\boldsymbol{\zeta} = (0, \dots, 0, \pi, \dots, \pi)$, Im $\boldsymbol{\zeta} = (-\pi, \dots, -\pi, 0, \dots, 0)$.
- They fulfil certain *r*-dependent bounds in imaginary directions (somewhat like Paley-Wiener).

If the quadratic form *A* is local in \mathcal{O}_r , then there exist meromorphic functions $F_k : \mathbb{C}^k \to \mathbb{C}$ such that

$$f_{mn}(\boldsymbol{\theta},\boldsymbol{\eta})=F_{m+n}(\theta_1+i\boldsymbol{0},\ldots,\theta_m+i\boldsymbol{0},\eta_1+i\pi-i\boldsymbol{0},\ldots,\eta_n+i\pi-i\boldsymbol{0}).$$

The F_k have the properties (similar to Schroer/Wiesbrock 2000):

- They are S-symmetric: $F_k(\ldots \zeta_j, \zeta_{j+1}, \ldots) =$ \$ $F_k(\ldots \zeta_{j+1}, \zeta_j, \ldots)$.
- They are S-periodic: $F_k(\ldots \zeta_j + 2i\pi \ldots) =$ \$ $F_k(\ldots \zeta_j, \ldots)$.
- They have first-order poles at $\zeta_j \zeta_\ell = i\pi$, with Res $_{\zeta_j - \zeta_\ell = i\pi} F_k(\zeta) = \mathcal{F}(1 - \mathcal{F})F_{k-2}(\hat{\zeta}).$
- They fulfill certain L^2 -like bounds at the points Im $\boldsymbol{\zeta} = (0, \dots, 0, \pi, \dots, \pi)$, Im $\boldsymbol{\zeta} = (-\pi, \dots, -\pi, 0, \dots, 0)$.
- They fulfil certain *r*-dependent bounds in imaginary directions (somewhat like Paley-Wiener).

Again, these conditions are "if and only if" on the level of quadratic forms (remark on operator domains later).

How to obtain the equivalence

Very brief sketch!

표 🖌 🔺 표

How to obtain the equivalence

Very brief sketch!

- From local A to meromorphic F_k:
 - We know from Lechner (2008) that the *f_{mn}*[*A*] have an analytic continuation to a certain domain, due to wedge-locality of *A*.
 - $U(j)A^*U(j)$ is wedge-local as well (A local in the opposite wedge), so $f_{mn}[U(j)A^*U(j)]$ extends to another analytic function.
 - Stitch these together to obtain F_k .

2

< ロ > < 四 > < 回 > < 回 > < 回 > 、

æ

ヘロト 人間 とくほとく ほとう

How to obtain the equivalence

- From meromorphic *F_k* to local *A*:
 - Show that A = ∑_{mn} ∫ F_{m+n}(...)z^{+m}zⁿ is local in a shifted left wedge (compute commutator with φ'(f); shift integral contours; use bounds on F_k)
 - Show that $U(j)A^*U(j)$ is given by $F_k(\cdot + i\pi)$; this involves periodicity and value of residues.
 - $F_k(\cdot + i\pi)$ fulfills the same bounds, thus *A* is local in a shifted right wedge.

- Question is "convergence of the series" note that it's infinite in general, since Res F_k ~ F_{k-2}.
- Smeared annihilators/creators are unbounded; impossible to read off ||A|| from estimates for F_k.

- Question is "convergence of the series" note that it's infinite in general, since Res F_k ~ F_{k-2}.
- Smeared annihilators/creators are unbounded; impossible to read off ||A|| from estimates for F_k.

- Question is "convergence of the series" note that it's infinite in general, since Res F_k ~ F_{k-2}.
- Smeared annihilators/creators are unbounded; impossible to read off ||A|| from estimates for F_k.

- The Araki expansion works naturally on quadratic forms A.
 - Matrix elements $(\psi, A\chi)$ are well defined, $\psi, \chi \in \mathcal{H}^{\omega, f}$ (finite particle number vectors).
 - The expansion series becomes a finite sum in matrix elements.

- Question is "convergence of the series" note that it's infinite in general, since Res F_k ~ F_{k-2}.
- Smeared annihilators/creators are unbounded; impossible to read off ||A|| from estimates for F_k.

- The Araki expansion works naturally on quadratic forms A.
 - Matrix elements $(\psi, A\chi)$ are well defined, $\psi, \chi \in \mathcal{H}^{\omega, f}$ (finite particle number vectors).
 - The expansion series becomes a finite sum in matrix elements.
- 2 We have a full converse of the characterization.

- Question is "convergence of the series" note that it's infinite in general, since Res F_k ~ F_{k-2}.
- Smeared annihilators/creators are unbounded; impossible to read off ||A|| from estimates for F_k.

- The Araki expansion works naturally on quadratic forms A.
 - Matrix elements $(\psi, A\chi)$ are well defined, $\psi, \chi \in \mathcal{H}^{\omega, f}$ (finite particle number vectors).
 - The expansion series becomes a finite sum in matrix elements.
- 2 We have a full converse of the characterization.
- 3 Allows to include local fields from the form factor programme, $\phi_{\text{local}}(f)$, which are unbounded.

We consider quadratic forms of a certian "regularity class" (Q^{ω}), where the singular behaviour of *A* is somehow "controlled":

$$\|A\|_{k}^{\omega} = \frac{1}{2} \|Q_{k}Ae^{-\omega(H/\mu)}Q_{k}\| + \frac{1}{2} \|Q_{k}e^{-\omega(H/\mu)}AQ_{k}\| < \infty$$

 ω is a function of energy of suitable growth.

We need a notion of locality adapted to quadratic forms.

We consider quadratic forms of a certian "regularity class" (Q^{ω}), where the singular behaviour of *A* is somehow "controlled":

$$\|A\|_{k}^{\omega} = \frac{1}{2} \|Q_{k}Ae^{-\omega(H/\mu)}Q_{k}\| + \frac{1}{2} \|Q_{k}e^{-\omega(H/\mu)}AQ_{k}\| < \infty$$

 ω is a function of energy of suitable growth. We need a notion of locality adapted to quadratic forms.

Definition

 ${\it A} \in {\cal Q}^\omega$ is called ω -local in the standard wedge ${\cal W}$ iff

 $(\phi(f)^*\psi, A\chi) = (\psi, A\phi(f)\chi)$ whenever $f \in \mathcal{D}^{\omega}(\mathcal{W}')$; $\psi, \chi \in \mathcal{H}^{\omega, \mathrm{f}}$.

 $\omega\text{-locality}$ in other wedges and double cones is defined correspondingly.

イロト イポト イヨト イヨト 三国

We consider quadratic forms of a certian "regularity class" (Q^{ω}), where the singular behaviour of *A* is somehow "controlled":

$$\|A\|_{k}^{\omega} = \frac{1}{2} \|Q_{k}Ae^{-\omega(H/\mu)}Q_{k}\| + \frac{1}{2} \|Q_{k}e^{-\omega(H/\mu)}AQ_{k}\| < \infty$$

 ω is a function of energy of suitable growth. We need a notion of locality adapted to quadratic forms.

Definition

 ${\it A}\in {\cal Q}^\omega$ is called ω -local in the standard wedge ${\cal W}$ iff

 $(\phi(f)^*\psi, A\chi) = (\psi, A\phi(f)\chi)$ whenever $f \in \mathcal{D}^{\omega}(\mathcal{W}'); \ \psi, \chi \in \mathcal{H}^{\omega, \mathrm{f}}.$

 $\omega\text{-locality}$ in other wedges and double cones is defined correspondingly.

So, our characterization actually works on the level of ω -local quadratic forms.

▶ < 프 > < 프 > · · 프

Weak locality vs. locality / Quadratic forms vs. operators

- The characterization theorem works best for ω -local quadratic forms.
- For QFT, we want operators which are local in the usual sense.
- Relation between these notions?

Weak locality vs. locality / Quadratic forms vs. operators

- The characterization theorem works best for ω -local quadratic forms.
- For QFT, we want operators which are local in the usual sense.
- Relation between these notions?

Lemma

Let A be a closed operator with core $\mathcal{H}^{\omega, \mathrm{f}}$ such that $\mathcal{H}^{\omega, \mathrm{f}} \subset \text{dom } A^*$. Suppose that

$$orall g\in\mathcal{D}^\omega_\mathbb{R}(\mathbb{R}^2): \; \exp(i\phi(g)^-)\mathcal{H}^{\omega,\mathrm{f}}\subset \mathsf{dom}\,\mathcal{A}.$$

Then A is ω -local in \mathcal{O}_r iff it is affiliated with $\mathcal{A}(\mathcal{O}_r)$.

(1)

Weak locality vs. locality / Quadratic forms vs. operators

Lemma

Let $A \in Q^{\omega}$. Suppose that

$$\sum_{n,n=0}^{\infty} \frac{2^{(m+n)/2}}{\sqrt{m!n!}} \|f_{m,n}^{[A]}\|_{m\times n}^{\omega} < \infty.$$

Then, A extends to a closed operator A^- with core $\mathcal{H}^{\omega, \mathrm{f}}$; one has $\mathcal{H}^{\omega, \mathrm{f}} \subset \mathrm{dom}(A^-)^*$. Also, the condition (1) is fulfilled by A^- .

n

Examples

• Buchholz-Summers type: Let $F_k = 0$ for $k \neq 2$, we set

$${\sf F}_2(\zeta_1,\zeta_2)=\sinh\left(rac{\zeta_1-\zeta_2}{2}
ight)\, ilde{g}(\mu{\sf E}(oldsymbol{\zeta})),$$

where \tilde{g} is the Fourier transform of a function $g \in \mathcal{D}(-r, r)$ for some r > 0, with $\omega(p) := \ell \log(1 + p)$, ℓ sufficiently large.

Schroer-Truong type:

Let $g\in\mathcal{D}(\mathbb{R}),$ $g\in\mathcal{S}_{\omega}$ with $\omega(p)=p^{lpha},$ 1/3 <lpha< 1. We set ($k\in\mathbb{N}_{0}$)

$$F_{2k+1}(\zeta) = \frac{1}{(4\pi i)^k k!} \tilde{g}(\mu E(\zeta)) \sum_{\sigma \in \mathfrak{S}_{2k+1}} \operatorname{sign} \sigma \prod_{j=1}^k \tanh \frac{\zeta_{\sigma(2j-1)} - \zeta_{\sigma(2j)}}{2},$$

with $F_{2k} = 0$ for any k.

Results & Open Questions

Results:

- In factorizing scattering models, there is an analogue to the Araki expansion.
- ω -locality of quadratic forms can be characterized by analyticity and boundedness properties of the expansion coefficients.
- We can extend the quadratic forms to closed, possibly unbounded, operators affiliated with the local algebras of bounded operators.

Results & Open Questions

Results:

- In factorizing scattering models, there is an analogue to the Araki expansion.
- ω -locality of quadratic forms can be characterized by analyticity and boundedness properties of the expansion coefficients.
- We can extend the quadratic forms to closed, possibly unbounded, operators affiliated with the local algebras of bounded operators.

Open questions:

- Investigate examples for general S.
- Show expansion of all local operators into (interacting) pointlike objects.
- Generalize our analysis to arbitrary spacetime dimensions, to a richer particle spectrum, to theories where the scattering function can have poles on the physical strip,...

イロト イポト イヨト イヨト