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Why affine bundles?

Interesting for inhomogeneous field equations, whose space of
solutions is naturally an affine space.
But there is more...
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solutions is naturally an affine space.
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Yang-Mills theory:
® Principal bundle over a globally hyperbolic spacetime;

e Fields are represented by connections,
which are sections of an affine bundle;

o Gauge group as symmetry group (the hardest part).

Simplest case: The Maxwell field.




Affine stuff: Spaces

An affine space (A, V, ®) modeled over the vector space V

is a set A endowed with a free and transitive right group action
®: Ax V — A of the abelian group (V,+).
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Affine stuff: Spaces

An affine space (A, V, ®) modeled over the vector space V

is a set A endowed with a free and transitive right group action
®: Ax V — A of the abelian group (V,+).

Euristically:
A vector space where we forgot which one is the null vector.

In fact, fixing an element of A, we can endow A with a vector
structure. Now A, as a vector space, becomes isomorphic to V.




Affine stuff: Spaces

An affine space (A, V, ®) modeled over the vector space V
is a set A endowed with a free and transitive right group action
®: Ax V — A of the abelian group (V,+).

(A, V,0), (B, W, V) affine
spaces. Amapf:A— Bis
an affine morphism if
there exists a linear map

fv : V — W such that
f(®(a, v)) = V(f(a), fv(v)).




Affine stuff: Spaces

An affine space (A, V, ®) modeled over the vector space V

is a set A endowed with a free and transitive right group action
®: Ax V — A of the abelian group (V,+).

Trivial example:
A vector space V' may be regarded as an affine space (V, V,+)
modeled on itself.




Affine stuff: Spaces

Vector dual A" of an affine space (A, V, ®):

The set of all affine morphisms from (A, V., ®) to the vector
space R regarded as an affine space modeled on itself.

Because of the vector structure of the target space R, this set
comes naturally endowed with a vector space structure.




Affine stuff: Spaces

Vector dual A" of an affine space (A, V, ®):

The set of all affine morphisms from (A, V., ®) to the vector
space R regarded as an affine space modeled on itself.

Because of the vector structure of the target space R, this set
comes naturally endowed with a vector space structure.

The dual 77 : AT — BT of an affine isomorphism f : A — B is

defined by fT(al) = af o f=! for each af € AT.

f automatically turns out to be a linear map.




e
Affine stuff: Bundles

Affine bundle (A,V, M):
Fiber bundle (A, M, a) with an affine space (A, V, ®) as fiber;

Vector bundle (V, M, my) with V as typical fiber;
Trivializations of A have the affine property wrt those of V.

Affine property:
Vx € M there exists a neighborhood U of x, a trivialization

Aly % U x Aof A and a trivialization V|y 2 U x V of V such
that, for each y € M, A|, 2} A'is an affine isomorphism whose

linear part is the vector space isomorphism V|, ¢L£y V.




e
Affine stuff: Bundles

Affine bundle (A,V, M):
Fiber bundle (A, M, a) with an affine space (A, V, ®) as fiber;

Vector bundle (V, M, my) with V as typical fiber;
Trivializations of A have the affine property wrt those of V.

Vector dual (AT, M, wa+) of an affine bundle:
Consider the Hom-bundle from the affine bundle (A,V, M) to the
vector bundle M x R regarded as an affine bundle.

We are simply taking the vector dual fiberwise.




Affine stuff: Bundles

Affine bundle (A,V, M):
Fiber bundle (A, M, a) with an affine space (A, V, ®) as fiber;
Vector bundle (V, M, my) with V as typical fiber;
Trivializations of A have the affine property wrt those of V.

(A,V, M), (B,W, N) affine bundles. A bundle morphism
(f,f): (A, M,7mp) — (B, N,7g) is an affine bundle

morphism if A|, & Blf(x) is an affine isomorphism Vx € M.
Induced vector bundle morphism: (V, M, my) b (W, N, w).




Affine stuff: Bundles

Affine bundle (A,V, M):
Fiber bundle (A, M, a) with an affine space (A, V, ®) as fiber;

Vector bundle (V, M, my) with V as typical fiber;
Trivializations of A have the affine property wrt those of V.

Remark:
The space I'(M, A) of sections of the fiber bundle (A, M, 7a)
(which is never empty) is an affine space modeled on the vector

space I'(M, V) of sections of the vector bundle (V, M, my).




Affine stuff: Differential operators

(A,V, M) affine bundle, (W, M, my) vector bundle. An affine
differential operator P : T'(M,A) — I'(M, W) is an

affine morphism whose linear part Py : '(M,V) — ['(M, W) is
a differential operator in the usual sense.




Affine stuff: Differential operators

(A,V, M) affine bundle, (W, M, my) vector bundle. An affine
differential operator P: T'(M,A) — T'(M,W) is an

affine morphism whose linear part Py : I'(M,V) — I'(M, W) is
a differential operator in the usual sense.

P is formally adjoinable if there exists a differential operator
P*: T(M,W*) — I'(M,A") such that for each w* € I'.(M, W*)
and for each o € I'(M, A) the following holds:

/M voly (P*w*)(0) = /M voly w*(Po).




Affine stuff: Differential operators

Theorem: Each affine diff. op. P: T'(M,A) — I'(M,W) is
formally adjoinable, but its formal adjoint is not unique.
If P* and P* are both formal adjoints of P, there exists a

differential operator Q : I'(M, W*) — C>°(M) such that
P — P* = Q1 and [, voly Qw* = 0 Yw* € T (M, W*).

Remarks:
e 1 € I'(M,A") is defined by 1(a) = 1 for each a € A.

e This non-uniqueness can be eliminated modding out an
appropriate vector space (see later).




Classical dynamics

From now on:

Only globally hyperbolic spacetimes as base manifolds;

Maps between bases are causal embeddings;
Vector bundles are endowed with an inner product;

Vector bundle morphisms preserve the inner products.

In particular the first and third statements apply to the base
manifold and the vector bundle underlying a given affine bundle,
while the second and the fourth apply to the base map and the
linear part of an affine bundle morphism.




Classical dynamics: Green-hyperbolic operators

(A,V, M) affine bundle. An affine differential operator
P:T'(M,A) — I'(M,V) is affine Green-hyperbolic if

its linear part Py : I'(M,V) — I'(M, V) is a Green-hyperbolic
differential operator in the usual sense.




Classical dynamics: Green-hyperbolic operators

(A,V, M) affine bundle. An affine differential operator
P:T(M,A) — I'(M,V) is affine Green-hyperbolic if

its linear part Py : I'(M,V) — I'(M, V) is a Green-hyperbolic
differential operator in the usual sense.

Remark: There exist many formal adjoints of P!
Let P*: I'(M,V*) — I'(M, AT) be one of the adjoints. Then

Adj(P) = P* + 1 { Q : T(M,V*) — C>=(M) such that }

[, voly Qv* =0 Yv* € T (M, V*)

is the set of the formal adjoints of P.




Classical dynamics: Observables

Space of observables Obs(A,V, M) = {F;: ¢ € T.(M,AT)}

defined via the map F introduced below.

F:¢eT(MA) s Fy= [, voly () : T(M,A) = R.




Classical dynamics: Observables

Space of observables Obs(A,V, M) = {F;: ¢ € T.(M,AT)}
defined via the map F introduced below.

F:¢eT(MA) s Fy= [, voly () : T(M,A) = R.

Theorem: T'(M, A") is separating on I'(M, A), but the
converse does not hold. More precisely:
If Fy(c) = Fy(o’) for each ¢ € T'o(M,Al) then o = o’;
If F4(c) =0 for each o € I'(M, A) then ¢ = al with
a € C2(M) such that [, voly a=0.




Classical dynamics: Observables

Theorem: T'.(M, At) is separating on I'(M, A), but the
converse does not hold. More precisely:

If Fs(0) = Fy(o’) for each ¢ € T'.(M,AT) then o = o’;

If F4(c) =0 for each o € I'(M, A) then ¢ = al with
a € C(M) such that [,, volya=0.

Remark:
According to the theorem, trivial observables are generated by

Triv(A,V, M) = {a € C(M): / voly a = 0} 1 C T (M,A").
M




e
Classical dynamics: Adj(P) and Triv(A,V, M)

e Set of formal adjoints of P : I'(M,A) — I'(M, V):

Adj(P) = P* + 1 { Q : T(M,V*) — C>(M) such that }

Sy voly Qv =0 Vv* € T(M,V*)

* Set generating trivial observables on (A,V, M):

Triv(A,V, M) = {a € C(M): / voly a = O} L.
M




e
Classical dynamics: Adj(P) and Triv(A,V, M)

e Set of formal adjoints of P : I'(M,A) — I'(M, V):

Adj(P) = P* + 1 { Q : T(M,V*) — C>(M) such that }

Jiyvoly Qv =0 Vv* € T(M,V*)

* Set generating trivial observables on (A,V, M):

Triv(A,V, M) = {a € C(M): / voly a = 0} L.
M

Modding out Triv(A,V, M) we obtain a unique formal
adjoint P* : To(M,V*) — To(M, AT)/Triv(A, V, M)!




Classical dynamics: Phase space

e The linear part Py of P is formally self-adjoint;
e |dentify (V, M, my) with its dual using the inner product;

 Consider Green operators G* for P, and introduce the
corresponding causal propagator G = G™ — G~




Classical dynamics: Phase space

e The linear part Py of P is formally self-adjoint;
e |dentify (V, M, my) with its dual using the inner product;

 Consider Green operators G* for P, and introduce the
corresponding causal propagator G = G™ — G~

Bilinear form on I' . (M, A" /Triv(A,V, M):

‘ T.(M,AT) \? ‘
(¢7 Q’) € (m) = //V]VOIM <¢V7 GUV>V

Well defined since Triv(A,V, M) does not affect linear parts.
—E




Classical dynamics: Phase space

Remarks:

o (P*¢)y = Pyoy for each ¢ € T' (M, AY)/Triv(A,V, M);

e Py(I'c(M,V)) = ker(G), hence we can take the quotient over
the subset P*(I'c(M,V)) C T'«(M, AT)/Triv(A,V, M):




Classical dynamics: Phase space

Remarks:

o (P*¢)y = Pyoy for each ¢ € T' (M, AY)/Triv(A,V, M);

e Py(I'c(M,V)) = ker(G), hence we can take the quotient over
the subset P*(I'c(M,V)) C T'«(M, AT)/Triv(A,V, M):

Pairing between observables:

T:EXE SR, ([O], [lz’]) — / VOIM <O\/, G‘l/.»‘\/)v,‘
JM

where € = (De(M, A1)/ Triv(A, V, M))/P*(Te(M, V).




Categorical formulation: Aff

Object (A,V, M, P):
Affine bundle (A,V, M);

Vector bundle (V, M, my) endowed with a non-degenerate
bilinear form (-, -),;

Globally hyperbolic spacetime M;

Affine Green-hyperbolic differential operator
P:T(M,A) — I'(M,V) with formally self-adjoint linear part
Py :T'(M,V) = T'(M,V).




Categorical formulation: Aff

Morphism (f, f):
e Affine bundle morphism (7, f) : (A1, V1, M1) — (Az, Vo, My);

e The linear part (fv,f) : (V1, My, my,) = (Va, M2, v,)
preserves the inner products;

e f: My — M, is a causal embedding;
e The following diagram commutes:

F(MQ, A2) L) F(Mz, V2)

Al 1%

F(Ml, Al) T) F(Ml, Vl)




Categorical formulation: Vec

Object (V, (-,-)):

e Vector space V endowed with a bilinear form (-, -),,.




Categorical formulation: Vec

Object (V, (-,-)):

e Vector space V endowed with a bilinear form (-, -),,.

Morphism L : (Vq, (-, '>V1) — (Vo (-, '>v2):

* Injective linear map L : Vi — V, preserving the bilinear forms:

V1XV1—>V2XV2

P




Categorical formulation: The functor PHGSp

Theorem:
For each object (A, V, M, P) in Aff, the associated phase
space (€, 7) constructed above is an object in Vec;
For each (£, f) : (A1, V1, My, P1) — (As, Vo, My, P5) in AfF,
the map
&1 &, [0l = [(f1).0),

where (f1,£) : (Arf, My, mp 1) = (Ao, Mo, 7y 1) is defined by
1. (at) = af o (F [,)~! Vx € My, Val € A,f|, and fT, is the
usual pushforward on compactly supported sections, is a
morphism in Vec (injective and bilinear-forms-preserving).




Categorical formulation: The functor PHGSp

* Send (A,V, M, P) in Aff to (£,7) in Vec;
e Send (f,f) . (A]_,V]_, M]_, P]_) — (A2,V2, M2, P2) in Aff to
(fT)* : (51,7'1) — (82,7'2) in Vec.

Theorem:
The assignment above is functiorial. Specifically, it defines a
covariant functor PHGp : Aff — Vec which fulfils:

Causality property;

Time-slice axiom.




Quantization: Bosons

e Subcategory Aff® encompassing all objects in Aff with a
symmetric inner product;

o Subcategory Vec? encompassing all objects in Vec with a
skew-symmetric bilinear form:;




Quantization: Bosons

e Subcategory Aff® encompassing all objects in Aff with a
symmetric inner product;

o Subcategory Vec? encompassing all objects in Vec with a
skew-symmetric bilinear form:;

Theorem:

PHGSp restricts to a covariant functor PhSp® : Afff — Vec?
fullfilling the causality property and the time-slice axiom.
Moreover composing with the usual bosonic quantization

functor €CR : Vec® — xAlg gives rise to a bosonic locally
covariant quantum fied theory.




Quantization: Fermions

e Subcategory Aff© encompassing all objects in Aff with a
skew-symmetric inner product;

e Subcategory Vec” encompassing all objects in Vec with a
symmetric bilinear form.

Theorem:

PHSp restricts to a covariant functor PHhSp© : AffF — Vech
fullfilling the causality property and the time-slice axiom.
Moreover composing with the usual fermionic quantization

functor €ANR : Vecm — *Alg gives rise to a fermionic
locally covariant quantum field theory.




Induction of states

Remark:
One can consistently consider the linear part of affine field

theories obtaining locally covariant quantum field theories in the
usual sense.




Induction of states

Remark:
One can consistently consider the linear part of affine field

theories obtaining locally covariant quantum field theories in the
usual sense.

Strategy:
Find simple algebra morphisms from AB(A,V, M, P) to
AB (A, V, M, P) to induce states on the full affine algebra from

lin

states on the linearized algebra via pull-back.




Induction of states: Morphisms in xAlg

For each section s € I'(M, A) such that P(s) = 0, one can define
a particular morphism kg in *Alg, which keeps somewhat track of

the affine part.

The definition is given on generators of the algebras involved:

kst AB(ALV, M, P) — A (A, V,M,P),
V([g]) = W/in([(bv])—l-/volMo(s)]l.

M




Induction of states: Pull-back

For each s € I'(M, A) such that P(s) = 0 and each state w on

AP (A, V, M, P), we can define a state w,, = w o ks on

lin

AB(A,V, M, P) by pull-back via k.




Induction of states: Pull-back

For each s € I'(M, A) such that P(s) = 0 and each state w on

AE (A,V, M, P), we can define a state w,,, = w o ks on

lin

AB(A,V, M, P) by pull-back via k.

Property:
Even when w is quasi-free, w,, is not, since

s (V([0)) = /M volu 6(s) # 0.

This allows us to measure the source when dealing with
inhomogeneous field equations (see later).




Induction of states: uSC

We say that a state w on AB(A,V, M, P) fulfils the microlocal
spectrum condition (uSC) when the wave-front set WF(w,) of
any of its n-point functions is included in [,,.

(x1,C15 -2 Xny Cn) € T*M"\ Z . there exists a graph
r,= G € G, and an immersion of G into M such

that G = 3070 k() — X071 k).




Induction of states: uSC

We say that a state w on AB(A,V, M, P) fulfils the microlocal
spectrum condition (uSC) when the wave-front set WF(w,) of
any of its n-point functions is included in [,,.

(x1,C15 -2 Xny Cn) € T*M"\ Z . there exists a graph

r,= G € G, and an immersion of G into M such
i NN _
that G; = D270 5 k() — 2207 ke(X).

Theorem: Take w on AL (A,V, M, P) quasi-free Hadamard and
s € I'(M, A) such that P(s) = 0. Then the state w,, on

AB(A,V, M, P) fulfils the microlocal spectrum condition.




Example: Inhomogeneous matter field theory

* Vector bundle (V, M, my) over a globally hyperbolic spacetime
M regarded as an affine bundle (V,V, M) modeled on itself;

* Non-degenerate bilinear form on (V, M, my);

e Formally self-adjoint Green-hyperbolic differential operator Py,
acting on I'(M, V);

e Section J € I'(M, V).

P = Py — J1 : is an affine Green-hyperbolic operator on
['(M,V) whose linear part Py is formally self-adjoint.

We can apply the affine machinery!




Example: Observables

Type 1 For each s € I'(M, V) such that P(s) = 0 and each
heT(M,V), take ¢ = (h,- —s), € (M, V).

F, measures flactuations around the solution s.

No information about the source J!




Example: Observables

Type 1 For each s € I'(M, V) such that P(s) = 0 and each
heT(M,V), take ¢ = (h,- —s), € (M, V).

F, measures flactuations around the solution s.

No information about the source J!

Type 2 For h € T'((M,V), take 1 = (Pyh,-),, € Tc(M, V).

If s € T'(M,V) is a solution, Pys = J, and hence
Fy(s) = [y volm (h, J)y.

Affine theories can measure sources!




Conclusions and perspectives

 Locally covariant QFTs on affine bundles;
« Well-behaved states from usual states;

* Relevant cases:
Inhomogenous field equations,
Maxwell field can be treated in this context
[MB, C. Dappiaggi, A. Schenkel, work in progress];
e Main advantage of affine theories:
Observables which allow the complete
reconstruction of the source exist!




Conclusions and perspectives

 Locally covariant QFTs on affine bundles;
« Well-behaved states from usual states;

* Relevant cases:
Inhomogenous field equations,
Maxwell field can be treated in this context
[MB, C. Dappiaggi, A. Schenkel, work in progress];
e Main advantage of affine theories:
Observables which allow the complete
reconstruction of the source exist!

Thank you for you attention!




