Quantum field theory on affine bundles Joint work with C. Dappiaggi & A. Schenkel

Marco Benini

Institute of Physics, University of Pavia & INFN, Division of Pavia

LQP31 - Leipzig, 24/11/2012

Why affine bundles?

Interesting for inhomogeneous field equations, whose space of solutions is naturally an affine space. But there is more...

Why affine bundles?

Interesting for inhomogeneous field equations, whose space of solutions is naturally an affine space. But there is more...

Yang-Mills theory:

- Principal bundle over a globally hyperbolic spacetime;
- Fields are represented by connections, which are sections of an affine bundle;
- Gauge group as symmetry group (the hardest part).

Simplest case: The Maxwell field.

An **affine space** (A, V, Φ) modeled over the vector space V is a set A endowed with a free and transitive right group action $\Phi : A \times V \rightarrow A$ of the abelian group (V, +).

An **affine space** (A, V, Φ) modeled over the vector space V is a set A endowed with a free and transitive right group action $\Phi: A \times V \rightarrow A$ of the abelian group (V, +).

Euristically:

A vector space where we forgot which one is the null vector.

In fact, fixing an element of A, we can endow A with a vector structure. Now A, as a vector space, becomes isomorphic to V.

An **affine space** (A, V, Φ) modeled over the vector space V is a set A endowed with a free and transitive right group action $\Phi : A \times V \to A$ of the abelian group (V, +).

 $(A, V, \Phi), (B, \overline{W}, \Psi)$ affine spaces. A map $f : A \to B$ is an **affine morphism** if there exists a linear map $f_V : V \to W$ such that $f(\Phi(a, v)) = \Psi(f(a), f_V(v)).$

$$\begin{array}{c} A \times V \xrightarrow{\Phi} A \\ f \times f_V \downarrow & \qquad \downarrow f \\ B \times W \xrightarrow{\Psi} B \end{array}$$

An **affine space** (A, V, Φ) modeled over the vector space V is a set A endowed with a free and transitive right group action $\Phi: A \times V \to A$ of the abelian group (V, +).

Trivial example:

A vector space V may be regarded as an affine space (V, V, +) modeled on itself.

Vector dual A^{\dagger} of an affine space (A, V, Φ) : The set of all affine morphisms from (A, V, Φ) to the vector space \mathbb{R} regarded as an affine space modeled on itself.

Because of the vector structure of the target space \mathbb{R} , this set comes naturally endowed with a vector space structure.

Vector dual A^{\dagger} of an affine space (A, V, Φ) : The set of all affine morphisms from (A, V, Φ) to the vector space \mathbb{R} regarded as an affine space modeled on itself.

Because of the vector structure of the target space \mathbb{R} , this set comes naturally endowed with a vector space structure.

The **dual** $f^{\dagger} : \overline{A^{\dagger}} \to B^{\dagger}$ of an affine isomorphism $f : A \to B$ is defined by $f^{\dagger}(a^{\dagger}) = a^{\dagger} \circ f^{-1}$ for each $a^{\dagger} \in A^{\dagger}$.

 f^{\dagger} automatically turns out to be a linear map.

Affine bundle (A, V, M):

- Fiber bundle (A, M, π_A) with an affine space (A, V, Φ) as fiber;
- Vector bundle (V, M, π_V) with V as typical fiber;
- Trivializations of A have the affine property wrt those of V.

Affine property:

 $\forall x \in M$ there exists a neighborhood U of x, a trivialization $A|_U \xrightarrow{\phi} U \times A$ of A and a trivialization $V|_U \xrightarrow{\phi_V} U \times V$ of V such that, for each $y \in M$, $A|_y \xrightarrow{\phi|_y} A$ is an affine isomorphism whose linear part is the vector space isomorphism $V|_y \xrightarrow{\phi_V|_y} V$.

Affine bundle (A, V, M):

- Fiber bundle (A, M, π_A) with an affine space (A, V, Φ) as fiber;
- Vector bundle (V, M, π_V) with V as typical fiber;
- Trivializations of A have the affine property wrt those of V.

Vector dual $(A^{\dagger}, M, \pi_{A^{\dagger}})$ of an affine bundle: Consider the Hom-bundle from the affine bundle (A, V, M) to the vector bundle $M \times \mathbb{R}$ regarded as an affine bundle.

We are simply taking the vector dual fiberwise.

Affine bundle (A, V, M):

- Fiber bundle (A, M, π_A) with an affine space (A, V, Φ) as fiber;
- Vector bundle (V, M, π_V) with V as typical fiber;
- Trivializations of A have the affine property wrt those of V.

(A, V, M), (B, W, N) affine bundles. A bundle morphism $(f, \underline{f}) : (A, M, \pi_A) \rightarrow (B, N, \pi_B)$ is an **affine bundle morphism** if $A|_x \xrightarrow{f|_x} B|_{\underline{f}(x)}$ is an affine isomorphism $\forall x \in M$. Induced vector bundle morphism: $(V, M, \pi_V) \xrightarrow{(f_V, \underline{f})} (W, N, \pi_W)$.

Affine bundle (A, V, M):

- Fiber bundle (A, M, π_A) with an affine space (A, V, Φ) as fiber;
- Vector bundle (V, $M, \pi_{
 m V}$) with V as typical fiber;
- Trivializations of A have the affine property wrt those of V.

Remark:

The space $\Gamma(M, A)$ of sections of the fiber bundle (A, M, π_A) (which is never empty) is an affine space modeled on the vector space $\Gamma(M, V)$ of sections of the vector bundle (V, M, π_V) .

Affine stuff: Differential operators

(A, V, M) affine bundle, (W, M, π_W) vector bundle. An **affine differential operator** $P : \Gamma(M, A) \to \Gamma(M, W)$ is an affine morphism whose linear part $P_V : \Gamma(M, V) \to \Gamma(M, W)$ is a differential operator in the usual sense.

Affine stuff: Differential operators

(A, V, M) affine bundle, (W, M, π_W) vector bundle. An **affine differential operator** $P : \Gamma(M, A) \to \Gamma(M, W)$ is an affine morphism whose linear part $P_V : \Gamma(M, V) \to \Gamma(M, W)$ is a differential operator in the usual sense.

P is formally adjoinable if there exists a differential operator $P^*: \Gamma(M, W^*) \rightarrow \Gamma(M, A^{\dagger})$ such that for each $w^* \in \Gamma_c(M, W^*)$ and for each $\sigma \in \Gamma(M, A)$ the following holds:

$$\int_{\mathcal{M}} \operatorname{vol}_{\mathcal{M}} (P^* w^*)(\sigma) = \int_{\mathcal{M}} \operatorname{vol}_{\mathcal{M}} w^* (P\sigma).$$

Affine stuff: Differential operators

Theorem: Each affine diff. op. $P : \Gamma(M, A) \to \Gamma(M, W)$ is formally adjoinable, but its formal adjoint is not unique. If P^* and $P^{*'}$ are both formal adjoints of P, there exists a differential operator $Q : \Gamma(M, W^*) \to C^{\infty}(M)$ such that $P^{*'} - P^* = Q\mathbb{1}$ and $\int_M \operatorname{vol}_M Qw^* = 0 \quad \forall w^* \in \Gamma_c(M, W^*).$

Remarks:

- $\mathbb{1} \in \Gamma(M, A^{\dagger})$ is defined by $\mathbb{1}(a) = 1$ for each $a \in A$.
- This non-uniqueness can be eliminated modding out an appropriate vector space *(see later)*.

Classical dynamics

From now on:

- Only globally hyperbolic spacetimes as base manifolds;
- Maps between bases are causal embeddings;
- Vector bundles are endowed with an inner product;
- Vector bundle morphisms preserve the inner products.

In particular the first and third statements apply to the base manifold and the vector bundle underlying a given affine bundle, while the second and the fourth apply to the base map and the linear part of an affine bundle morphism.

Classical dynamics: Green-hyperbolic operators

(A, V, M) affine bundle. An affine differential operator $P : \Gamma(M, A) \rightarrow \Gamma(M, V)$ is **affine Green-hyperbolic** if its linear part $P_V : \Gamma(M, V) \rightarrow \Gamma(M, V)$ is a Green-hyperbolic differential operator in the usual sense.

Classical dynamics: Green-hyperbolic operators

(A, V, M) affine bundle. An affine differential operator $P : \Gamma(M, A) \rightarrow \Gamma(M, V)$ is **affine Green-hyperbolic** if its linear part $P_V : \Gamma(M, V) \rightarrow \Gamma(M, V)$ is a Green-hyperbolic differential operator in the usual sense.

Remark: There exist many formal adjoints of P! Let $P^* : \Gamma(M, V^*) \to \Gamma(M, A^{\dagger})$ be one of the adjoints. Then

$$\operatorname{Adj}(P) = P^* + \mathbb{1} \left\{ \begin{array}{l} Q : \Gamma(M, \mathsf{V}^*) \to \operatorname{C}^{\infty}(M) \text{ such that} \\ \int_M \operatorname{vol}_M Q v^* = 0 \quad \forall v^* \in \Gamma_c(M, \mathsf{V}^*) \end{array} \right\}$$

is the set of the formal adjoints of P.

Classical dynamics: Observables

Space of **observables** Obs $(A, V, M) = \{F_{\phi} : \phi \in \Gamma_{c}(M, A^{\dagger})\}$ defined via the map *F* introduced below.

$$F: \phi \in \Gamma_c(M, \mathsf{A}^{\dagger}) \mapsto F_{\phi} = \int_M \operatorname{vol}_M \phi(\cdot) : \Gamma(M, \mathsf{A}) \to \mathbb{R}.$$

Classical dynamics: Observables

Space of **observables** Obs $(A, V, M) = \{F_{\phi} : \overline{\phi} \in \Gamma_{c}(M, A^{\dagger})\}$ defined via the map *F* introduced below.

$$F: \phi \in \Gamma_c(M, \mathsf{A}^{\dagger}) \mapsto F_{\phi} = \int_M \operatorname{vol}_M \phi(\cdot) : \Gamma(M, \mathsf{A}) \to \mathbb{R}.$$

Theorem: $\Gamma_c(M, A^{\dagger})$ is separating on $\Gamma(M, A)$, but the converse does not hold. More precisely: If $F_{\phi}(\sigma) = F_{\phi}(\sigma')$ for each $\phi \in \Gamma_c(M, A^{\dagger})$ then $\sigma = \sigma'$; If $F_{\phi}(\sigma) = 0$ for each $\sigma \in \Gamma(M, A)$ then $\phi = a\mathbb{1}$ with $a \in C_c^{\infty}(M)$ such that $\int_M \operatorname{vol}_M a = 0$.

Classical dynamics: Observables

Theorem: $\Gamma_c(M, A^{\dagger})$ is separating on $\Gamma(M, A)$, but the converse does not hold. More precisely: If $F_{\phi}(\sigma) = F_{\phi}(\sigma')$ for each $\phi \in \Gamma_c(M, A^{\dagger})$ then $\sigma = \sigma'$; If $F_{\phi}(\sigma) = 0$ for each $\sigma \in \Gamma(M, A)$ then $\phi = a\mathbb{1}$ with $a \in C_c^{\infty}(M)$ such that $\int_M \operatorname{vol}_M a = 0$.

Remark:

According to the theorem, trivial observables are generated by

$$\operatorname{Triv}(\mathsf{A},\mathsf{V},M) = \left\{ a \in \operatorname{C}^\infty_c(M) : \int_M \operatorname{vol}_M a = 0 \right\} \mathbb{1} \subseteq \Gamma_c(M,\mathsf{A}^\dagger).$$

Classical dynamics: Adj(P) and Triv(A, V, M)

Set of formal adjoints of P : Γ(M, A) → Γ(M, V):

$$\operatorname{Adj}(P) = P^* + \mathbb{1} \left\{ \begin{array}{l} Q: \Gamma(M, \mathsf{V}^*) \to \operatorname{C}^{\infty}(M) \text{ such that} \\ \int_M \operatorname{vol}_M Q \mathsf{v}^* = 0 \quad \forall \mathsf{v}^* \in \Gamma_c(M, \mathsf{V}^*) \end{array} \right\};$$

• Set generating trivial observables on (A, V, M):

$$\operatorname{Triv}(\mathsf{A},\mathsf{V},\mathsf{M}) = \left\{ \mathbf{a} \in \operatorname{C}^\infty_c(\mathsf{M}) : \int_{\mathsf{M}} \operatorname{vol}_{\mathsf{M}} \mathbf{a} = \mathbf{0} \right\} \mathbb{1}.$$

Classical dynamics: Adj(P) and Triv(A, V, M)

Set of formal adjoints of P : Γ(M, A) → Γ(M, V):

$$\operatorname{Adj}(P) = P^* + \mathbb{1} \left\{ \begin{array}{l} Q: \Gamma(M, V^*) \to \operatorname{C}^{\infty}(M) \text{ such that} \\ \int_M \operatorname{vol}_M Qv^* = 0 \quad \forall v^* \in \Gamma_c(M, V^*) \end{array} \right\};$$

• Set generating trivial observables on (A, V, M):

$$\operatorname{Triv}(\mathsf{A},\mathsf{V},\mathsf{M}) = \left\{ a \in \operatorname{C}^{\infty}_{c}(\mathsf{M}) : \int_{\mathsf{M}} \operatorname{vol}_{\mathsf{M}} a = 0 \right\} \mathbb{1}$$

Modding out $\operatorname{Triv}(A, V, M)$ we obtain a **unique** formal adjoint $P^* : \Gamma_c(M, V^*) \to \Gamma_c(M, A^{\dagger})/\operatorname{Triv}(A, V, M)!$

- The linear part P_V of P is **formally self-adjoint**;
- Identify (V, M, π_V) with its dual using the inner product;
- Consider Green operators G[±] for P_V and introduce the corresponding causal propagator G = G⁺ G⁻.

- The linear part P_V of P is **formally self-adjoint**;
- Identify (V, M, π_V) with its dual using the inner product;
- Consider Green operators G[±] for P_V and introduce the corresponding causal propagator G = G⁺ G⁻.

Bilinear form on $\Gamma_c(M, A^{\dagger})/\text{Triv}(A, V, M)$:

$$(\phi,\psi) \in \left(\frac{\Gamma_{c}(M,\mathsf{A}^{\dagger})}{\operatorname{Triv}(\mathsf{A},\mathsf{V},M)}\right)^{2} \mapsto \int_{M} \operatorname{vol}_{M} \langle \phi_{V}, G\psi_{V} \rangle_{V}.$$

Well defined since Triv(A, V, M) does not affect linear parts.

Remarks:

- $(P^*\phi)_V = P_V \phi_V$ for each $\phi \in \Gamma_c(M, A^{\dagger}) / \text{Triv}(A, V, M)$;
- P_V(Γ_c(M, V)) = ker(G), hence we can take the quotient over the subset P^{*}(Γ_c(M, V)) ⊂ Γ_c(M, A[†])/Triv(A, V, M):

Remarks:

- $(P^*\phi)_V = P_V \phi_V$ for each $\phi \in \Gamma_c(M, A^{\dagger}) / \text{Triv}(A, V, M)$;
- $P_V(\Gamma_c(M, V)) = \ker(G)$, hence we can take the quotient over the subset $P^*(\Gamma_c(M, V)) \subset \Gamma_c(M, A^{\dagger}) / \operatorname{Triv}(A, V, M)$:

Pairing between observables:

$$\tau: \mathcal{E} \times \mathcal{E} \to \mathbb{R}, \quad ([\phi], [\psi]) \mapsto \int_{\mathcal{M}} \operatorname{vol}_{\mathcal{M}} \langle \phi_{\mathcal{V}}, G\psi_{\mathcal{V}} \rangle_{\mathcal{V}},$$

where $\mathcal{E} = (\Gamma_c(M, A^{\dagger}) / \text{Triv}(A, V, M)) / P^*(\Gamma_c(M, V)).$

Categorical formulation: Aff

Object (A, V, *M*, *P*):

- Affine bundle (A, V, M);
- Vector bundle (V, M, π_V) endowed with a non-degenerate bilinear form $\langle \cdot, \cdot \rangle_V$;
- Globally hyperbolic spacetime *M*;
- Affine Green-hyperbolic differential operator $P : \Gamma(M, A) \rightarrow \Gamma(M, V)$ with formally self-adjoint linear part $P_V : \Gamma(M, V) \rightarrow \Gamma(M, V)$.

Categorical formulation: Aff

Morphism (f, \underline{f}) :

- Affine bundle morphism $(f, \underline{f}) : (A_1, V_1, M_1) \rightarrow (A_2, V_2, M_2);$
- The linear part $(f_V, \underline{f}) : (V_1, M_1, \pi_{V_1}) \rightarrow (V_2, M_2, \pi_{V_2})$ preserves the inner products;
- $\underline{f}: M_1 \rightarrow M_2$ is a causal embedding;
- The following diagram commutes:

$$\begin{array}{c} \Gamma(M_2, \mathsf{A}_2) \xrightarrow{P_2} \Gamma(M_2, \mathsf{V}_2) \\ f^* \downarrow & \downarrow f_V^* \\ \Gamma(M_1, \mathsf{A}_1) \xrightarrow{P_1} \Gamma(M_1, \mathsf{V}_1) \end{array}$$

Categorical formulation: Vec

Object $(V, \langle \cdot, \cdot \rangle_V)$:

• Vector space V endowed with a bilinear form $\langle \cdot, \cdot \rangle_V$.

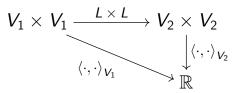
Categorical formulation: Vec

Object $(V, \langle \cdot, \cdot \rangle_V)$:

• Vector space V endowed with a bilinear form $\langle \cdot, \cdot \rangle_V$.

Morphism $L: (V_1, \langle \cdot, \cdot \rangle_{V_1}) \to (V_2, \langle \cdot, \cdot \rangle_{V_2})$:

• Injective linear map $L: V_1 \rightarrow V_2$ preserving the bilinear forms:



Categorical formulation: The functor \mathfrak{PhSp}

Theorem:

- For each object (A, V, M, P) in Aff, the associated phase space (*E*, *τ*) constructed above is an **object** in Vec;
- For each (f, \underline{f}) : $(A_1, V_1, M_1, P_1) \rightarrow (A_2, V_2, M_2, P_2)$ in Aff, the map

$\mathcal{E}_1 \to \mathcal{E}_2, \quad [\phi] \mapsto [(f^{\dagger})_* \phi],$

where $(f^{\dagger}, \underline{f}) : (A_1^{\dagger}, M_1, \pi_{A_1^{\dagger}}) \to (A_2^{\dagger}, M_2, \pi_{A_2^{\dagger}})$ is defined by $f^{\dagger} \upharpoonright_x (a^{\dagger}) = a^{\dagger} \circ (f \upharpoonright_x)^{-1} \quad \forall x \in M_1, \forall a^{\dagger} \in A_1^{\dagger} \upharpoonright_x \text{ and } f^{\dagger}_*$ is the usual pushforward on compactly supported sections, is a **morphism** in Vec (injective and bilinear-forms-preserving).

Categorical formulation: The functor \mathfrak{PhSp}

- Send (A, V, M, P) in Aff to (\mathcal{E}, τ) in Vec;
- Send $(f, \underline{f}) : (A_1, V_1, M_1, P_1) \rightarrow (A_2, V_2, M_2, P_2)$ in Aff to $(f^{\dagger})_* : (\mathcal{E}_1, \tau_1) \rightarrow (\mathcal{E}_2, \tau_2)$ in Vec.

Theorem:

The assignment above is functionial. Specifically, it defines a **covariant functor** \mathfrak{PhSp} : Aff \rightarrow Vec which fulfils: **Causality property**; **Time-slice axiom**.

Quantization: Bosons

- Subcategory Aff^B encompassing all objects in Aff with a symmetric inner product;
- Subcategory Vec^B encompassing all objects in Vec with a skew-symmetric bilinear form;

Quantization: Bosons

Subcategory Aff^B encompassing all objects in Aff with a symmetric inner product;

Subcategory Vec^B encompassing all objects in Vec with a skew-symmetric bilinear form;

Theorem:

 \mathfrak{PhSp} restricts to a covariant functor $\mathfrak{PhSp}^B : \operatorname{Aff}^B \to \operatorname{Vec}^B$ fullfilling the causality property and the time-slice axiom. Moreover composing with the usual bosonic quantization functor $\mathfrak{CCR} : \operatorname{Vec}^B \to *\operatorname{Alg}$ gives rise to a **bosonic locally covariant quantum fied theory**.

Quantization: Fermions

- Subcategory Aff^F encompassing all objects in Aff with a skew-symmetric inner product;
- Subcategory Vec^F encompassing all objects in Vec with a symmetric bilinear form.

Theorem:

 \mathfrak{PhSp} restricts to a covariant functor \mathfrak{PhSp}^F : $\mathrm{Aff}^F \to \mathrm{Vec}^F$ fulfilling the causality property and the time-slice axiom. Moreover composing with the usual fermionic quantization functor \mathfrak{CMR} : $\mathrm{Vec}^F \to *\mathrm{Alg}$ gives rise to a **fermionic locally covariant quantum field theory**.

Induction of states

Remark:

One can consistently consider the linear part of affine field theories obtaining locally covariant quantum field theories in the usual sense.

Induction of states

Remark:

One can consistently consider the linear part of affine field theories obtaining locally covariant quantum field theories in the usual sense.

Strategy: Find simple algebra morphisms from $\mathcal{A}^{B}(A, V, M, P)$ to $\mathcal{A}^{B}_{lin}(A, V, M, P)$ to induce states on the full affine algebra from states on the linearized algebra via pull-back.

Induction of states: Morphisms in *Alg

For each section $s \in \Gamma(M, A)$ such that P(s) = 0, one can define a particular morphism κ_s in *Alg, which keeps somewhat track of the affine part.

The definition is given on generators of the algebras involved:

$$\begin{split} \kappa_s : \mathcal{A}^{\mathcal{B}}(\mathsf{A},\mathsf{V},M,P) &\to & \mathcal{A}^{\mathcal{B}}_{\mathit{lin}}(\mathsf{A},\mathsf{V},M,P), \\ \Psi([\phi]) &\mapsto & \Psi_{\mathit{lin}}([\phi_V]) + \int_{\mathcal{M}} \operatorname{vol}_{\mathcal{M}} \phi(s) \, \mathbb{1}. \end{split}$$

Induction of states: Pull-back

For each $s \in \Gamma(M, A)$ such that P(s) = 0 and each state ω on $\mathcal{A}_{lin}^{B}(A, V, M, P)$, we can define a **state** $\omega_{\kappa_{s}} = \omega \circ \kappa_{s}$ **on** $\mathcal{A}^{B}(A, V, M, P)$ **by pull-back via** κ_{s} .

Induction of states: Pull-back

For each $s \in \Gamma(M, A)$ such that P(s) = 0 and each state ω on $\mathcal{A}_{lin}^{B}(A, V, M, P)$, we can define a **state** $\omega_{\kappa_{s}} = \omega \circ \kappa_{s}$ **on** $\mathcal{A}^{B}(A, V, M, P)$ **by pull-back via** κ_{s} .

Property: Even when ω is quasi-free, $\omega_{\kappa_{\rm s}}$ is not, since

$$\omega_{\kappa_s}(\Psi([\phi])) = \int_M \operatorname{vol}_M \phi(s) \neq 0.$$

This allows us to **measure the source** when dealing with inhomogeneous field equations (*see later*).

6/8

Induction of states: μ SC

We say that a state ω on $\mathcal{A}^{B}(A, V, M, P)$ fulfils the microlocal spectrum condition (μ SC) when the wave-front set WF(ω_{n}) of any of its *n*-point functions is included in Γ_{n} .

$$\Gamma_n = \left\{ \begin{array}{c} (x_1, \zeta_1; \dots; x_n, \zeta_n) \in \mathsf{T}^* M^n \setminus \mathcal{Z} : \text{ there exists a graph} \\ G \in \mathsf{G}_n \text{ and an immersion of } G \text{ into } M \text{ such} \\ \text{that } \zeta_i = \sum_{\gamma_r(i,j)}^{i < j} k_r(x_i) - \sum_{\gamma_r(i,j)}^{i > j} k_r(x_i). \end{array} \right\}$$

Induction of states: μ SC

We say that a state ω on $\mathcal{A}^{B}(A, V, M, P)$ fulfils the microlocal spectrum condition (μ SC) when the wave-front set WF(ω_{n}) of any of its *n*-point functions is included in Γ_{n} .

$$\Gamma_n = \left\{ \begin{array}{c} (x_1, \zeta_1; \dots; x_n, \zeta_n) \in \mathsf{T}^* M^n \setminus \mathcal{Z} : \text{ there exists a graph} \\ G \in \mathsf{G}_n \text{ and an immersion of } G \text{ into } M \text{ such} \\ \text{that } \zeta_i = \sum_{\gamma_r(i,j)}^{i < j} k_r(x_i) - \sum_{\gamma_r(i,j)}^{i > j} k_r(x_i). \end{array} \right\}$$

Theorem: Take ω on $\mathcal{A}_{lin}^{\mathcal{B}}(A, V, M, P)$ quasi-free Hadamard and $s \in \Gamma(M, A)$ such that P(s) = 0. Then the state ω_{κ_s} on $\mathcal{A}^{\mathcal{B}}(A, V, M, P)$ fulfils the microlocal spectrum condition.

Example: Inhomogeneous matter field theory

- Vector bundle (V, M, π_V) over a globally hyperbolic spacetime M regarded as an affine bundle (V, V, M) modeled on itself;
- Non-degenerate bilinear form on (V, M, π_V) ;
- Formally self-adjoint Green-hyperbolic differential operator P_V acting on Γ(M, V);
- Section $J \in \Gamma(M, V)$.

 $P = P_V - J\mathbb{1}$: is an affine Green-hyperbolic operator on $\Gamma(M, V)$ whose linear part P_V is formally self-adjoint.

We can apply the affine machinery!

Example: Observables

Type 1 For each $s \in \Gamma(M, V)$ such that P(s) = 0 and each $h \in \Gamma_c(M, V)$, take $\phi = \langle h, \cdot - s \rangle_V \in \Gamma_c(M, V^{\dagger})$.

 F_{ϕ} measures flactuations around the solution *s*. No information about the source *J*!

Example: Observables

Type 1 For each $s \in \Gamma(M, V)$ such that P(s) = 0 and each $h \in \Gamma_c(M, V)$, take $\phi = \langle h, \cdot - s \rangle_V \in \Gamma_c(M, V^{\dagger})$.

 F_{ϕ} measures flactuations around the solution *s*. No information about the source *J*!

Type 2 For $h \in \Gamma_c(M, V)$, take $\psi = \langle P_V h, \cdot \rangle_V \in \Gamma_c(M, V^{\dagger})$.

If $s \in \Gamma(M, V)$ is a solution, $P_V s = J$, and hence $F_{\psi}(s) = \int_M \operatorname{vol}_M \langle h, J \rangle_V$. Affine theories can measure sources!

Conclusions and perspectives

- Locally covariant QFTs on affine bundles;
- Well-behaved states from usual states;
- Relevant cases:

Inhomogenous field equations, **Maxwell field** can be treated in this context [MB, C. Dappiaggi, A. Schenkel, *work in progress*];

Main advantage of affine theories:
 Observables which allow the complete reconstruction of the source exist!

Conclusions and perspectives

- Locally covariant QFTs on affine bundles;
- Well-behaved states from usual states;
- Relevant cases:

Inhomogenous field equations, **Maxwell field** can be treated in this context [MB, C. Dappiaggi, A. Schenkel, *work in progress*];

• Main advantage of affine theories: Observables which allow the complete reconstruction of the source exist!

Thank you for you attention!