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Why affine bundles?

Interesting for inhomogeneous field equations, whose space of
solutions is naturally an affine space.
But there is more...

Yang-Mills theory:
• Principal bundle over a globally hyperbolic spacetime;

• Fields are represented by connections,
which are sections of an affine bundle;

• Gauge group as symmetry group (the hardest part).

Simplest case: The Maxwell field.
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Affine stuff: Spaces

An affine space (A,V ,Φ) modeled over the vector space V
is a set A endowed with a free and transitive right group action
Φ : A× V → A of the abelian group (V ,+).
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Affine stuff: Spaces

An affine space (A,V ,Φ) modeled over the vector space V
is a set A endowed with a free and transitive right group action
Φ : A× V → A of the abelian group (V ,+).

Euristically:
A vector space where we forgot which one is the null vector.

In fact, fixing an element of A, we can endow A with a vector
structure. Now A, as a vector space, becomes isomorphic to V .
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Affine stuff: Spaces

An affine space (A,V ,Φ) modeled over the vector space V
is a set A endowed with a free and transitive right group action
Φ : A× V → A of the abelian group (V ,+).

(A,V ,Φ), (B ,W ,Ψ) affine
spaces. A map f : A→ B is
an affine morphism if
there exists a linear map
fV : V → W such that
f (Φ(a, v)) = Ψ(f (a), fV (v)).

A× V A

B ×W B

Φ

f × fV f

Ψ
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Affine stuff: Spaces

An affine space (A,V ,Φ) modeled over the vector space V
is a set A endowed with a free and transitive right group action
Φ : A× V → A of the abelian group (V ,+).

Trivial example:
A vector space V may be regarded as an affine space (V ,V ,+)
modeled on itself.
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Affine stuff: Spaces

Vector dual A† of an affine space (A,V ,Φ):
The set of all affine morphisms from (A,V ,Φ) to the vector
space R regarded as an affine space modeled on itself.

Because of the vector structure of the target space R, this set
comes naturally endowed with a vector space structure.
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Affine stuff: Spaces

Vector dual A† of an affine space (A,V ,Φ):
The set of all affine morphisms from (A,V ,Φ) to the vector
space R regarded as an affine space modeled on itself.

Because of the vector structure of the target space R, this set
comes naturally endowed with a vector space structure.

The dual f † : A† → B† of an affine isomorphism f : A→ B is
defined by f †(a†) = a† ◦ f −1 for each a† ∈ A†.

f † automatically turns out to be a linear map.
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Affine stuff: Bundles

Affine bundle (A,V,M):

• Fiber bundle (A,M , πA) with an affine space (A,V ,Φ) as fiber;

• Vector bundle (V,M , πV) with V as typical fiber;

• Trivializations of A have the affine property wrt those of V.

Affine property:
∀x ∈ M there exists a neighborhood U of x , a trivialization

A|U
φ→ U × A of A and a trivialization V|U

φV→ U × V of V such

that, for each y ∈ M , A|y
φ�y→ A is an affine isomorphism whose

linear part is the vector space isomorphism V|y
φV �y→ V .
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Affine stuff: Bundles

Affine bundle (A,V,M):

• Fiber bundle (A,M , πA) with an affine space (A,V ,Φ) as fiber;

• Vector bundle (V,M , πV) with V as typical fiber;

• Trivializations of A have the affine property wrt those of V.

Vector dual (A†,M , πA†) of an affine bundle:
Consider the Hom-bundle from the affine bundle (A,V,M) to the
vector bundle M × R regarded as an affine bundle.

We are simply taking the vector dual fiberwise.
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Affine stuff: Bundles

Affine bundle (A,V,M):

• Fiber bundle (A,M , πA) with an affine space (A,V ,Φ) as fiber;

• Vector bundle (V,M , πV) with V as typical fiber;

• Trivializations of A have the affine property wrt those of V.

(A,V,M), (B,W,N) affine bundles. A bundle morphism
(f , f ) : (A,M , πA)→ (B,N , πB) is an affine bundle
morphism if A|x

f �x→ B|f (x) is an affine isomorphism ∀x ∈ M .

Induced vector bundle morphism: (V,M , πV)
(fV ,f )→ (W,N , πW).
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Affine stuff: Bundles

Affine bundle (A,V,M):

• Fiber bundle (A,M , πA) with an affine space (A,V ,Φ) as fiber;

• Vector bundle (V,M , πV) with V as typical fiber;

• Trivializations of A have the affine property wrt those of V.

Remark:
The space Γ(M ,A) of sections of the fiber bundle (A,M , πA)
(which is never empty) is an affine space modeled on the vector
space Γ(M ,V) of sections of the vector bundle (V,M , πV).
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Affine stuff: Differential operators

(A,V,M) affine bundle, (W,M , πW) vector bundle. An affine
differential operator P : Γ(M ,A)→ Γ(M ,W) is an
affine morphism whose linear part PV : Γ(M ,V)→ Γ(M ,W) is
a differential operator in the usual sense.
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Affine stuff: Differential operators

(A,V,M) affine bundle, (W,M , πW) vector bundle. An affine
differential operator P : Γ(M ,A)→ Γ(M ,W) is an
affine morphism whose linear part PV : Γ(M ,V)→ Γ(M ,W) is
a differential operator in the usual sense.

P is formally adjoinable if there exists a differential operator
P∗ : Γ(M ,W∗)→ Γ(M ,A†) such that for each w ∗ ∈ Γc(M ,W∗)
and for each σ ∈ Γ(M ,A) the following holds:∫

M

volM (P∗w ∗)(σ) =

∫
M

volM w ∗(Pσ).
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Affine stuff: Differential operators

Theorem: Each affine diff. op. P : Γ(M ,A)→ Γ(M ,W) is
formally adjoinable, but its formal adjoint is not unique.
If P∗ and P∗′ are both formal adjoints of P , there exists a
differential operator Q : Γ(M ,W∗)→ C∞(M) such that
P∗′ − P∗ = Q1 and

∫
M

volM Qw ∗ = 0 ∀w ∗ ∈ Γc(M ,W∗).

Remarks:

• 1 ∈ Γ(M ,A†) is defined by 1(a) = 1 for each a ∈ A.

• This non-uniqueness can be eliminated modding out an
appropriate vector space (see later).
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Classical dynamics

From now on:

• Only globally hyperbolic spacetimes as base manifolds;

• Maps between bases are causal embeddings;

• Vector bundles are endowed with an inner product;

• Vector bundle morphisms preserve the inner products.

In particular the first and third statements apply to the base
manifold and the vector bundle underlying a given affine bundle,
while the second and the fourth apply to the base map and the
linear part of an affine bundle morphism.
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Classical dynamics: Green-hyperbolic operators

(A,V,M) affine bundle. An affine differential operator
P : Γ(M ,A)→ Γ(M ,V) is affine Green-hyperbolic if
its linear part PV : Γ(M ,V)→ Γ(M ,V) is a Green-hyperbolic
differential operator in the usual sense.
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Classical dynamics: Green-hyperbolic operators

(A,V,M) affine bundle. An affine differential operator
P : Γ(M ,A)→ Γ(M ,V) is affine Green-hyperbolic if
its linear part PV : Γ(M ,V)→ Γ(M ,V) is a Green-hyperbolic
differential operator in the usual sense.

Remark: There exist many formal adjoints of P!
Let P∗ : Γ(M ,V∗)→ Γ(M ,A†) be one of the adjoints. Then

Adj(P) = P∗ + 1

{
Q : Γ(M ,V∗)→ C∞(M) such that∫
M

volM Qv ∗ = 0 ∀v ∗ ∈ Γc(M ,V∗)

}
.

is the set of the formal adjoints of P .
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Classical dynamics: Observables

Space of observables Obs(A,V,M) = {Fφ : φ ∈ Γc(M ,A†)}
defined via the map F introduced below.

F : φ ∈ Γc(M ,A†) 7→ Fφ =
∫
M

volM φ(·) : Γ(M ,A)→ R.
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Classical dynamics: Observables

Space of observables Obs(A,V,M) = {Fφ : φ ∈ Γc(M ,A†)}
defined via the map F introduced below.

F : φ ∈ Γc(M ,A†) 7→ Fφ =
∫
M

volM φ(·) : Γ(M ,A)→ R.

Theorem: Γc(M ,A†) is separating on Γ(M ,A), but the
converse does not hold. More precisely:

• If Fφ(σ) = Fφ(σ′) for each φ ∈ Γc(M ,A†) then σ = σ′;

• If Fφ(σ) = 0 for each σ ∈ Γ(M ,A) then φ = a1 with
a ∈ C∞c (M) such that

∫
M

volM a = 0.
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Classical dynamics: Observables

Theorem: Γc(M ,A†) is separating on Γ(M ,A), but the
converse does not hold. More precisely:

• If Fφ(σ) = Fφ(σ′) for each φ ∈ Γc(M ,A†) then σ = σ′;

• If Fφ(σ) = 0 for each σ ∈ Γ(M ,A) then φ = a1 with
a ∈ C∞c (M) such that

∫
M

volM a = 0.

Remark:
According to the theorem, trivial observables are generated by

Triv(A,V,M) =

{
a ∈ C∞c (M) :

∫
M

volM a = 0

}
1 ⊆ Γc(M ,A†).
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Classical dynamics: Adj(P) and Triv(A,V,M)

• Set of formal adjoints of P : Γ(M ,A)→ Γ(M ,V):

Adj(P) = P∗ + 1

{
Q : Γ(M ,V∗)→ C∞(M) such that∫
M

volM Qv ∗ = 0 ∀v ∗ ∈ Γc(M ,V∗)

}
;

• Set generating trivial observables on (A,V,M):

Triv(A,V,M) =

{
a ∈ C∞c (M) :

∫
M

volM a = 0

}
1.
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Classical dynamics: Adj(P) and Triv(A,V,M)

• Set of formal adjoints of P : Γ(M ,A)→ Γ(M ,V):

Adj(P) = P∗ + 1

{
Q : Γ(M ,V∗)→ C∞(M) such that∫
M

volM Qv ∗ = 0 ∀v ∗ ∈ Γc(M ,V∗)

}
;

• Set generating trivial observables on (A,V,M):

Triv(A,V,M) =

{
a ∈ C∞c (M) :

∫
M

volM a = 0

}
1.

Modding out Triv(A,V,M) we obtain a unique formal
adjoint P∗ : Γc(M ,V∗)→ Γc(M ,A†)/Triv(A,V,M)!
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Classical dynamics: Phase space

• The linear part PV of P is formally self-adjoint;

• Identify (V,M , πV) with its dual using the inner product;

• Consider Green operators G± for PV and introduce the
corresponding causal propagator G = G+ − G−.
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Classical dynamics: Phase space

• The linear part PV of P is formally self-adjoint;

• Identify (V,M , πV) with its dual using the inner product;

• Consider Green operators G± for PV and introduce the
corresponding causal propagator G = G+ − G−.

Bilinear form on Γc(M ,A†)/Triv(A,V,M):

(φ, ψ) ∈
(

Γc(M ,A†)

Triv(A,V,M)

)2

7→
∫
M

volM 〈φV ,GψV 〉V.

Well defined since Triv(A,V,M) does not affect linear parts.
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Classical dynamics: Phase space

Remarks:

• (P∗φ)V = PVφV for each φ ∈ Γc(M ,A†)/Triv(A,V,M);

• PV (Γc(M ,V)) = ker(G ), hence we can take the quotient over
the subset P∗(Γc(M ,V)) ⊂ Γc(M ,A†)/Triv(A,V,M):
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Classical dynamics: Phase space

Remarks:

• (P∗φ)V = PVφV for each φ ∈ Γc(M ,A†)/Triv(A,V,M);

• PV (Γc(M ,V)) = ker(G ), hence we can take the quotient over
the subset P∗(Γc(M ,V)) ⊂ Γc(M ,A†)/Triv(A,V,M):

Pairing between observables:

τ : E × E → R, ([φ], [ψ]) 7→
∫
M

volM 〈φV ,GψV 〉V,

where E = (Γc(M ,A†)/Triv(A,V,M))/P∗(Γc(M ,V)).
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Categorical formulation: Aff

Object (A,V,M ,P):
• Affine bundle (A,V,M);

• Vector bundle (V,M , πV) endowed with a non-degenerate
bilinear form 〈·, ·〉V;

• Globally hyperbolic spacetime M ;

• Affine Green-hyperbolic differential operator
P : Γ(M ,A)→ Γ(M ,V) with formally self-adjoint linear part
PV : Γ(M ,V)→ Γ(M ,V).
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Categorical formulation: Aff

Morphism (f , f ):
• Affine bundle morphism (f , f ) : (A1,V1,M1)→ (A2,V2,M2);
• The linear part (fV , f ) : (V1,M1, πV1)→ (V2,M2, πV2)

preserves the inner products;
• f : M1 → M2 is a causal embedding;
• The following diagram commutes:

Γ(M2,A2) Γ(M2,V2)

Γ(M1,A1) Γ(M1,V1)

P2

f ∗ fV
∗

P1
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Categorical formulation: Vec

Object (V , 〈·, ·〉V ):
• Vector space V endowed with a bilinear form 〈·, ·〉V .
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Categorical formulation: Vec

Object (V , 〈·, ·〉V ):
• Vector space V endowed with a bilinear form 〈·, ·〉V .

Morphism L : (V1, 〈·, ·〉V1
)→ (V2, 〈·, ·〉V2

):
• Injective linear map L : V1 → V2 preserving the bilinear forms:

V1 × V1 V2 × V2

R

L× L

〈·, ·〉V1

〈·, ·〉V2
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Categorical formulation: The functor PhSp

Theorem:

• For each object (A,V,M ,P) in Aff, the associated phase
space (E , τ) constructed above is an object in Vec;

• For each (f , f ) : (A1,V1,M1,P1)→ (A2,V2,M2,P2) in Aff,
the map

E1 → E2, [φ] 7→ [(f †)∗φ],

where (f †, f ) : (A1
†,M1, πA1

†)→ (A2
†,M2, πA2

†) is defined by

f † �x (a†) = a† ◦ (f �x)−1 ∀x ∈ M1,∀a† ∈ A1
†|x and f †∗ is the

usual pushforward on compactly supported sections, is a
morphism in Vec (injective and bilinear-forms-preserving).
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Categorical formulation: The functor PhSp

• Send (A,V,M ,P) in Aff to (E , τ) in Vec;

• Send (f , f ) : (A1,V1,M1,P1)→ (A2,V2,M2,P2) in Aff to
(f †)∗ : (E1, τ1)→ (E2, τ2) in Vec.

Theorem:
The assignment above is functiorial. Specifically, it defines a
covariant functor PhSp : Aff → Vec which fulfils:

• Causality property;

• Time-slice axiom.
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Quantization: Bosons

• Subcategory AffB encompassing all objects in Aff with a
symmetric inner product;

• Subcategory VecB encompassing all objects in Vec with a
skew-symmetric bilinear form;

5/8



Quantization: Bosons

• Subcategory AffB encompassing all objects in Aff with a
symmetric inner product;

• Subcategory VecB encompassing all objects in Vec with a
skew-symmetric bilinear form;

Theorem:
PhSp restricts to a covariant functor PhSpB : AffB → VecB

fullfilling the causality property and the time-slice axiom.
Moreover composing with the usual bosonic quantization
functor CCR : VecB → ∗Alg gives rise to a bosonic locally
covariant quantum fied theory.
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Quantization: Fermions

• Subcategory AffF encompassing all objects in Aff with a
skew-symmetric inner product;

• Subcategory VecF encompassing all objects in Vec with a
symmetric bilinear form.

Theorem:
PhSp restricts to a covariant functor PhSpF : AffF → VecF

fullfilling the causality property and the time-slice axiom.
Moreover composing with the usual fermionic quantization
functor CAR : VecF → ∗Alg gives rise to a fermionic
locally covariant quantum field theory.
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Induction of states

Remark:
One can consistently consider the linear part of affine field
theories obtaining locally covariant quantum field theories in the
usual sense.
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Induction of states

Remark:
One can consistently consider the linear part of affine field
theories obtaining locally covariant quantum field theories in the
usual sense.

Strategy:
Find simple algebra morphisms from AB(A,V,M ,P) to
AB

lin(A,V,M ,P) to induce states on the full affine algebra from
states on the linearized algebra via pull-back.
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Induction of states: Morphisms in ∗Alg

For each section s ∈ Γ(M ,A) such that P(s) = 0, one can define
a particular morphism κs in ∗Alg, which keeps somewhat track of
the affine part.

The definition is given on generators of the algebras involved:

κs : AB(A,V,M ,P) → AB
lin(A,V,M ,P),

Ψ([φ]) 7→ Ψlin([φV ]) +

∫
M

volM φ(s)1.
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Induction of states: Pull-back

For each s ∈ Γ(M ,A) such that P(s) = 0 and each state ω on
AB

lin(A,V,M ,P), we can define a state ωκs = ω ◦ κs on
AB(A,V,M ,P) by pull-back via κs .
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Induction of states: Pull-back

For each s ∈ Γ(M ,A) such that P(s) = 0 and each state ω on
AB

lin(A,V,M ,P), we can define a state ωκs = ω ◦ κs on
AB(A,V,M ,P) by pull-back via κs .

Property:
Even when ω is quasi-free, ωκs is not, since

ωκs (Ψ([φ])) =

∫
M

volM φ(s) 6= 0.

This allows us to measure the source when dealing with
inhomogeneous field equations (see later).
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Induction of states: µSC

We say that a state ω on AB(A,V,M ,P) fulfils the microlocal
spectrum condition (µSC) when the wave-front set WF(ωn) of
any of its n-point functions is included in Γn.

Γn =


(x1, ζ1; . . . ; xn, ζn) ∈ T∗Mn \ Z : there exists a graph

G ∈ Gn and an immersion of G into M such

that ζi =
∑i<j

γr (i ,j)
kr (xi)−

∑i>j
γr (i ,j)

kr (xi).


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Induction of states: µSC

We say that a state ω on AB(A,V,M ,P) fulfils the microlocal
spectrum condition (µSC) when the wave-front set WF(ωn) of
any of its n-point functions is included in Γn.

Γn =


(x1, ζ1; . . . ; xn, ζn) ∈ T∗Mn \ Z : there exists a graph

G ∈ Gn and an immersion of G into M such

that ζi =
∑i<j

γr (i ,j)
kr (xi)−

∑i>j
γr (i ,j)

kr (xi).


Theorem: Take ω on AB

lin(A,V,M ,P) quasi-free Hadamard and
s ∈ Γ(M ,A) such that P(s) = 0. Then the state ωκs on
AB(A,V,M ,P) fulfils the microlocal spectrum condition.
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Example: Inhomogeneous matter field theory

• Vector bundle (V,M , πV) over a globally hyperbolic spacetime
M regarded as an affine bundle (V,V,M) modeled on itself;

• Non-degenerate bilinear form on (V,M , πV);

• Formally self-adjoint Green-hyperbolic differential operator PV

acting on Γ(M ,V);

• Section J ∈ Γ(M ,V).

P = PV − J1 : is an affine Green-hyperbolic operator on
Γ(M ,V) whose linear part PV is formally self-adjoint.

We can apply the affine machinery!
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Example: Observables

Type 1 For each s ∈ Γ(M ,V) such that P(s) = 0 and each
h ∈ Γc(M ,V), take φ = 〈h, · − s〉V ∈ Γc(M ,V†).

Fφ measures flactuations around the solution s.

No information about the source J!
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Example: Observables

Type 1 For each s ∈ Γ(M ,V) such that P(s) = 0 and each
h ∈ Γc(M ,V), take φ = 〈h, · − s〉V ∈ Γc(M ,V†).

Fφ measures flactuations around the solution s.

No information about the source J!

Type 2 For h ∈ Γc(M ,V), take ψ = 〈PV h, ·〉V ∈ Γc(M ,V†).

If s ∈ Γ(M ,V) is a solution, PV s = J , and hence

Fψ(s) =
∫
M

volM 〈h, J〉V .

Affine theories can measure sources!
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Conclusions and perspectives

• Locally covariant QFTs on affine bundles;

• Well-behaved states from usual states;

• Relevant cases:
Inhomogenous field equations,
Maxwell field can be treated in this context

[MB, C. Dappiaggi, A. Schenkel, work in progress];

• Main advantage of affine theories:
Observables which allow the complete
reconstruction of the source exist!

Thank you for you attention!
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